Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

* Edit post * Report this post * Reply with quote Numerical result of the solve function

1 Ansicht (letzte 30 Tage)
armando herculano
armando herculano am 27 Jan. 2011
Geschlossen: MATLAB Answer Bot am 20 Aug. 2021
I'm Seeking the common points to the parabola and the circle centered in the point A(Xa,Za)with AB radius.
Why not assume the function 'solve' the values of Xa, Za and AB in the equation and thus obtain a numerical result rather than analytical in the first call?
Xa=.5 Za=1 AB=1
%----------------------CÁLCULOS---------------------------------------------- % Za=1/(4*F)*Xa^2 - equation of the parabola that passes the point A(Xa,Za) % Zb=1/(4*F)*Xb^2; - equation of the parabola that passes the point B(Xb,Zb) % (Xb-Xa)^2+(Zb-Za)^2=AB^2 -equation of the circle of radius AB centered at the point A(Xa,Za) %............................................................................
% first call SOLVE [F,Xb,Zb]=solve('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb','(Xb-Xa)^2+(Zb-Za)^2-AB^2');
% call SOLVE with the values of Xa,Za,AB the result are numeric %--------------------------------------------------------------- [F,Xb,Zb]=solve('1/(4*F)*.5^2-1','1/(4*F)*Xb^2-Zb','(Xb-.5)^2+(Zb-.5)^2-1^2');
appreciate any help

Antworten (1)

Walter Roberson
Walter Roberson am 27 Jan. 2011
[F,Xb,Zb]=solve(subs('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb'),subs('(Xb-Xa)^2+(Zb-Za)^2-AB^2'));

Diese Frage ist geschlossen.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by