svm training and classification
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
vidhya v
am 19 Mär. 2020
Kommentiert: vidhya v
am 10 Dez. 2020
Greetings,
I have to classify the input image of my dataset. Based on the below example code (Brain MRI detection), I am doing my project. for classification i have to use fitcsvm(). As i am new to matlab, I dont know how to implement it, because i have to pass features into ClassificationSVM. svmtrain() and svmclassify() are not supporting. please suggest on how can i replace the functions to get my result
example code:
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
%Skewness = skewness(img)
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
load Trainset.mat
xdata = meas;
group = label;
svmStruct1 = svmtrain(xdata,group,'KernelFunction', 'linear');
species = svmclassify(svmStruct1,feat,'showplot',false);
if strcmpi(species,'MALIGNANT')
helpdlg(' Malignant Tumor ');
disp(' Malignant Tumor ');
else
helpdlg(' Benign Tumor ');
disp(' Benign Tumor ');
end
0 Kommentare
Akzeptierte Antwort
Furkan DEMIR
am 10 Dez. 2020
Hello.
load Trainset.mat has two file. one of these meas and label.
When I see meas files. I saw 20*13 matrix. what is the meaning. Why the file is 20*13 matrix
Weitere Antworten (1)
Mahesh Taparia
am 23 Mär. 2020
Hi
You can use the function fitcsvm as follows:
SVMModel = fitcsvm(xdata,group,'KernelFunction', 'linear');
[label,score] = predict(SVMModel,feat);
label will give the labels of feat. For more information , you can visit the documentation page.
Siehe auch
Kategorien
Mehr zu Classification Learner App finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!