How to run a regression of a time series with random data and log-norm distribution?

1 Ansicht (letzte 30 Tage)
I have a vector containing 6,000 random entries distributed with log-norm. What type of regression model should I use?
This is my dataset
% generating time series with 6000 entries log-normal distributed
rng ( 'default' ); % So that numbers can be repeated
time_series2 = lognrnd (0,0.25,6000,1); % generating time series with mu set to zero and sigma 0.25
This is what I have so far
% REGRESSION TIME SERIES 2
logarithms_ts2 = log (time_series2); % calculating logarithm of the values ​​in order to use GLM fuction
% [regression2, dev, stats] = glmfit (xtime2, logarithms_ts2, 'normal');
regression2 = fitglm (xtime2, time_series2) % regression of time series 2
% GLM function does not support lognormal distributions, so the logarithms
% are calculated in order to use the GLM fit function with the use of normal
% distribution https://www.mathworks.com/matlabcentral/answers/101420-why-does-the-glmfit-function-not-recognize-lognormal-as-a-distribution

Antworten (0)

Kategorien

Mehr zu Curve Fitting Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by