Water Tank input that changes based on volume.

2 Ansichten (letzte 30 Tage)
Karl Nilsson
Karl Nilsson am 12 Mär. 2020
Kommentiert: Karl Nilsson am 12 Mär. 2020
Need to plot the volume of water and concentration of pollutant in a tank of water. Initial inflow is 1.25 m^3/s, and outflow is 1.1. When the tank's volume reaches 200 m^3, the inflow is 0, and returns to 1.25 when the volume drops to 150. How can inflow (Qin) be changed to 0 at V=200, and then reset at V=150? if statement?
Here is code for a prior part to the project that assumes a constant rate of fill:
V0 = 50; %initial volume (m^3)
c0 = 0; %initial concentration
Qin = 1.25 * 60; %inflow (m^3/hour)
Qout = 1.1 * 60; %outflow (m^3/hour)
cin = 100; %pollutant concentration (mg/L)
t_final = 50; %hours
dt = 0.5; %time step
T = [dt:0.5:50];
t = 0;
%
k = 0;
%
%Initialize Loop Variables
cold = c0;
vold = V0;
for n = [1 : (t_final/dt)];
t = t + dt;
k = 0;
alpha = (Qin / (vold + (Qin - Qout) * t)) + k;
beta = (Qin*cin)/(vold+(Qin - Qout) * t);
c(n) = cold - dt * alpha * cold + dt * beta;
V(n) = vold + (Qin - Qout) * dt;
cold = c(n);
vold = V(n);
end
yyaxis left
plot(T,V)
ylabel('Volume (m^3)')
xlabel('Time (hours)')
yyaxis right
plot(T,c)
ylabel('Concentration (mg/L)')
disp(' t V c')
format compact
disp([T' V' c'])
more(10)

Akzeptierte Antwort

Subhamoy Saha
Subhamoy Saha am 12 Mär. 2020
Please check with the following
clear, clc
V0 = 50; %initial volume (m^3)
c0 = 0; %initial concentration
Qin = 1.25 * 60; %inflow (m^3/hour)
Qout = 1.1 * 60; %outflow (m^3/hour)
cin = 100; %pollutant concentration (mg/L)
t_final = 50; %hours
dt = 0.5; %time step
T = [dt:0.5:50];
t = 0;
%
k = 0;
%
%Initialize Loop Variables
cold = c0;
vold = V0;
inflow=1; % inflow status variable
for n = [1 : (t_final/dt)]
t = t + dt;
k = 0;
if vold>=200 || inflow==0
inflow=0; % say inflow stopped
if vold<=150
inflow=1; % say inflow start
end
end
if inflow==0
Qin=0;
else
Qin=1.25 *60;
end
alpha = (Qin / (vold + (Qin - Qout) * t)) + k;
beta = (Qin*cin)/(vold+(Qin - Qout) * t);
c(n) = cold - dt * alpha * cold + dt * beta;
V(n) = vold + (Qin - Qout) * dt;
cold = c(n);
vold = V(n);
end
yyaxis left
plot(T,V)
ylabel('Volume (m^3)')
xlabel('Time (hours)')
yyaxis right
plot(T,c)
ylabel('Concentration (mg/L)')
disp('      t        V           c')
format compact
disp([T' V' c'])
more(10)
  1 Kommentar
Karl Nilsson
Karl Nilsson am 12 Mär. 2020
Thanks. I figured it out eventually but this is much more efficient.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Data Import and Analysis finden Sie in Help Center und File Exchange

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by