how to initialize the neural network to a set of weights ???

48 Ansichten (letzte 30 Tage)
Mariem Harmassi
Mariem Harmassi am 16 Okt. 2012
Kommentiert: LukasJ am 6 Nov. 2020
I created my NN with patternet ??

Akzeptierte Antwort

Greg Heath
Greg Heath am 20 Okt. 2012
Unlike the older nets (e.g., newfit, newpr, newff,...), you cannot assign weights to the newer networks (e.g., fitnet, patternnet, feedforwardnet,...) unless the net is configured.
There are two ways to configure the net before manually assigning your own initial weights. Both will assign initial weights that you can overwrite:
1. help/doc configure.
net = configure(net, x, t );
2. Train the net for 1 epoch
net.trainParam.epochs= 1.
net = train(net,x,t);
Hope this helps.
Thank you for formally accepting my answer.
Greg
  2 Kommentare
Mariem Harmassi
Mariem Harmassi am 20 Okt. 2012
ok i will try to cinfigure the net before training cauz the second solution is not a good one i need to train the net according to a specifical set of weignts .
Samisam
Samisam am 7 Jan. 2018
@Greg Heath can I do a manual weight initialization before I train the net???
I mean if I have an optimal weight from a spesific algorithm and I want to create a NN to test data using these weights is there any way to do this without training the net again??

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (3)

Greg Heath
Greg Heath am 19 Okt. 2012
Bearbeitet: Greg Heath am 20 Okt. 2012
net = patternet;
will default to H = 10 hidden nodes. For other values use
net = patternnet(H);
If
size(input) = [I N ]
size(target) = [O N ]
the node topology is I-H-O.
For a manual weight initialization, first configure the net:
net = configure(net,x,t);
For a random weight initialization, initialize the random number generator. Then generate and assign the weights:
rng(0)
IW = 0.01*randn(H,I);
b1 = 0.01*randn(H,1);
LW = 0.01*randn(O,H);
b2 = 0.01*randn(O,1);
then
net.IW{1,1} = IW;
net.b{1,1} = b1;
net.LW{2,1} = LW;
net.b{2,1} = b2;
Hope this helps.
Thank you for formally accepting my answer.
Greg
  4 Kommentare
Heather Zhang
Heather Zhang am 30 Aug. 2016
Thank you Greg. "configure" works really well.
LukasJ
LukasJ am 6 Nov. 2020
Dear Greg Heath,
unfortunately configuring the net doesn't do the trick for me:
I tried setting the inital weights manually e.g.
net.iw{1,1} = zeros(...
and via
net.initFcn = 'initlay';
net.layers{1,1}.initFcn = 'initwb';
net.layers{2,1}.initFcn = 'initwb';
net.InputWeights{1,1}.initFcn = 'midpoint';
net.LayerWeights{2,1}.initFcn = 'midpoint';
initFcn to call for midpoint initialization. The first won't update any weights after training, the former won't do anything (still random weights when I check before training, training results after fixed epochs are not comparable).
Your help would be very much appreciated!
Best regards,
Lukas

Melden Sie sich an, um zu kommentieren.


renz
renz am 19 Okt. 2012
net.IW{1} = %input weights
net.LW{2} = %layer weights
% biases:
net.b{1} =
net.b{2} =

Sara Perez
Sara Perez am 12 Sep. 2019
You can specify your own function for the initialization of the weights with 'WeightsInitializer' in convolution2dLayer.
layer = convolution2dLayer(filterSize,numFilters, ...
'WeightsInitializer', @(sz) rand(sz) * 0.0001, ...
'BiasInitializer', @(sz) rand(sz) * 0.0001)
info here:

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by