Doubt in MATLAB coding.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Joy Salomi
am 4 Mär. 2020
Bearbeitet: Joy Salomi
am 6 Mär. 2020
Hello. I'm trying to plot a differntial equation using MATLAB. When I run my program, I'm getting different graph.
I've attached the differential equation and my MATLAB coding below.
Can anyone tell me how to use the boundary conditions correctly?
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275001/image.jpeg)
function abcd
ex4init=bvpinit(linspace(0.00001,100,21),[0,0]);
sol=bvp4c(@ex4ode,@ex4bc,ex4init)
plot(sol.x,sol.y(1,:),'blue');
end
function f=ex4ode(r,y)
a=0.001391304348;
b=19.31459475;
f=[y(2)
-(2/r)*y(2)-a*(1-exp(b*y(1)))
];
end
function res=ex4bc(ya,yb)
res=[
ya(1)+1
yb(2)
]
end
This is the graph which I got.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275002/image.jpeg)
But this is the exact graph.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275003/image.jpeg)
2 Kommentare
Robert U
am 4 Mär. 2020
Hi Joy Salomi,
Check your x axis range. I suppose the values should be in nm, i.e. 1e-9 m.
Kind regards,
Robert
Akzeptierte Antwort
Robert U
am 5 Mär. 2020
Bearbeitet: Robert U
am 6 Mär. 2020
Hi Joy Salomi,
Thanks for the paper. The differential equation should be written in spherical coordinates (edit: I think there is a mistake to assume R to be constant). Since R is assumed to be constant there is no singularity. I adjusted the code and tested it in Matlab 2019b. Depending on chosen xmesh results might differ. You have to try a bit to get a stable solution. I attached an example for the D = 200 nm graph.
abcd.m
function abcd(ah,D,phi_s)
ex4init=bvpinit(linspace(0,D/2,3e3),[phi_s 0]);
sol=bvp4c(@ex4ode,@ex4bc,ex4init);
plot(ah,sol.x*1e9,sol.y(1,:));
ah.XLabel.String = 'r [nm]';
ah.YLabel.String = 'phi [V]';
function dphidr=ex4ode(r,phi)
a = -1.602176634e-19*1e17*(1e-2)^(-3)/(8.8541878125e-12*11.5);
b = 1.602176634e-19/(physconst('Boltzmann')*600);
dphidr = [ phi(2)
a * ( 1-exp( b*phi(1) ) ) ];
end
function res=ex4bc(ya,yb)
res=[ ya(1)+ phi_s
yb(2) ];
end
end
Example call:
fh = figure;
ah = axes(fh);
hold(ah,'on')
arrayfun(@(dIn) abcd(ah,200e-9,dIn),[0.1,0.3,0.7,1])
Result:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275488/image.jpeg)
Kind regards,
Robert
4 Kommentare
Robert U
am 6 Mär. 2020
Hi Joy Salomi,
I added the singular term as you proposed according to my first answer:
abcd_wSingularity:
function abcd_wSingularity(ah,D,phi_s)
ex4init=bvpinit(linspace(0,D/2,3e3),[phi_s 0]);
S = [0 0; 0 -2];
options = bvpset('SingularTerm',S);
sol=bvp4c(@ex4ode,@ex4bc,ex4init,options);
plot(ah,sol.x*1e9,sol.y(1,:));
ah.XLabel.String = 'r [nm]';
ah.YLabel.String = 'phi [V]';
function dphidr=ex4ode(r,phi)
a = -1.602176634e-19*1e17*(1e-2)^(-3)/(8.8541878125e-12*11.5);
b = 1.602176634e-19/(physconst('Boltzmann')*600);
dphidr = [ phi(2)
a * ( 1-exp( b*phi(1) ) ) ];
end
function res=ex4bc(ya,yb)
res=[ ya(1)+ phi_s
yb(2) ];
end
end
Example call:
fh = figure;
ah = axes(fh);
hold(ah,'on')
arrayfun(@(dIn) abcd_wSingularity(ah,200e-9,dIn),[0.1,0.3,0.7,1])
Result:
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275487/image.jpeg)
Kind regards,
Robert
Weitere Antworten (2)
Constantino Carlos Reyes-Aldasoro
am 4 Mär. 2020
This is a bit hard to solve without knowing more of the problem. What I would do is to break down the problem and analyse each step. For example, look at the values you have in the solution "sol". I plot separately:
>> plot(sol.x);
>> plot(sol.y);
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275022/image.jpeg)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275023/image.jpeg)
And also
>> plot(sol.y');
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/275024/image.jpeg)
Is anything here remotely connected to what you are expecting? My guess is that no, sol.y has values between 0 and 12e4 whilst the graph you want is between -1 and 0. So the problem is not really about Matlab but about the equations that you are using.
Hope this helps.
1 Kommentar
Robert U
am 4 Mär. 2020
Hi Joy Salomi,
the implementation of a boundary value problem with singular term has to be done a bit different than you did.
--> doc: Solve BVP with Singular Term
function abcd
ex4init=bvpinit(linspace(0,100,5),[-1 0]);
S = [0 0; 0 -2];
options = bvpset('SingularTerm',S);
sol=bvp4c(@ex4ode,@ex4bc,ex4init,options);
plot(sol.x,sol.y(1,:),'blue');
end
function f=ex4ode(r,y)
a=0.001391304348;
b=19.31459475;
f = [ y(2)
-a*(1-exp(b*y(1))) ];
end
function res=ex4bc(ya,yb)
res=[ ya(1)+1
yb(2) ];
end
Using the values "a" and "b" you supplied still leads to a singular Jacobian matrix which provoces an error. Changing both these values to one leads to a solution that qualitatively corresponds to the curves drawn.
There are two more points that hinder me to test my solution:
- I don't know how "a" and "b" translate to "phi_s".
- I still assume that r is given in SI units. If r is in unit [m] the interval needs to be adjusted to [nm] as shown in your graph.
Kind regards,
Robert
4 Kommentare
Robert U
am 5 Mär. 2020
Hi Joy Salomi,
maybe you can state what physical process is described by that differential equation and what reference you are using (where is your photo from).
I still think that your values for a and b do not correspond to the case that is depicted in the book/article.
Kind regards,
Robert
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!