error while transferring weights of a trained CNN network to an empty CNN network
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Radians
 am 19 Feb. 2020
  
    
    
    
    
    Kommentiert: Radians
 am 15 Jan. 2021
            Hi,
I am trying to transfer the weights of layer 11 from 'original_net' to layer 11 of 'layers_final'. Both have same structure and 'layer_final' is just the empty, untrained version of 'original net'. i am using the following command:
Layers_final(11).Weights = net_1.Layers(11).Weights
I get the following error while doing so:
Error using nnet.cnn.layer.TransposedConvolution2DLayer/set.Weights (line 204)
Expected input to be of size 4x4x8x1, but it is of size 4x4x8x8.


code for layers_final:
imageLayer_final = imageInputLayer([32,32,1]);
encodingLayers_final = [ ...
    convolution2dLayer(3,16,'Padding','same'), ...
    reluLayer, ...
    maxPooling2dLayer(2,'Padding','same','Stride',2), ...
    convolution2dLayer(3,8,'Padding','same'), ...
    reluLayer, ...
    maxPooling2dLayer(2,'Padding','same','Stride',2), ...
    convolution2dLayer(3,8,'Padding','same'), ...
    reluLayer, ...
    maxPooling2dLayer(2,'Padding','same','Stride',2)];
decodingLayers_final = [ ...
    createUpsampleTransponseConvLayer(2,8), ...
    reluLayer, ...
    createUpsampleTransponseConvLayer(2,8), ...
    reluLayer, ...
    createUpsampleTransponseConvLayer(2,16), ...
    reluLayer, ...
    convolution2dLayer(3,1,'Padding','same'), ...
    clippedReluLayer(1.0), ...
    regressionLayer];
layers_final = [imageLayer,encodingLayers,decodingLayers];
net_original attached with the question.
Thanks
0 Kommentare
Akzeptierte Antwort
  Srivardhan Gadila
    
 am 24 Feb. 2020
        If the function createUpsampleTransponseConvLayer is the helper function from the example Prepare Datastore for Image-to-Image Regression then change the 'NumChannels' Name-Value Pair Argument to 'auto' or don't mention it in the transposedConv2dLayer function.  
% helper function from the example Prepare Datastore for Image-to-Image Regression
function out = createUpsampleTransponseConvLayer(factor,numFilters)
filterSize = 2*factor - mod(factor,2); 
cropping = (factor-mod(factor,2))/2;
numChannels = 1;
out = transposedConv2dLayer(filterSize,numFilters, ... 
    'NumChannels',numChannels,'Stride',factor,'Cropping',cropping);
end
Since the layer is defined with 'NumChannels' (number of channels of the input to this transposedConv2dLayer) as 1 hence it can accept wieghts of size "filterSize x filterSize x numFilters x numChannels" which is 4x4x8x1 in this case.
Change the function as follows:
function out = createUpsampleTransponseConvLayer(factor,numFilters)
filterSize = 2*factor - mod(factor,2); 
cropping = (factor-mod(factor,2))/2;
out = transposedConv2dLayer(filterSize,numFilters, ... 
    'Stride',factor,'Cropping',cropping);
end
and then define the layers.
3 Kommentare
  Srivardhan Gadila
    
 am 9 Mär. 2020
				I have heard that this issue is known and the concerned parties might be working on it.
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

