- Use the function augmentedImageDatastore for effective preprocessing of the images
- Use the activations function to compute the DL Network layer activations i.e. the image features using the CNN net
- Use the predict function to finally make a prediction using the classifier
How to pass images to a cnn for analysis?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Teshan Rezel
am 31 Jan. 2020
Kommentiert: Teshan Rezel
am 6 Feb. 2020
Hi folks,
I'm not very familiar with matlab so apologies for the obvious question, but how can I pass an image to my cnn to be analysed?
My cnn's code is as follows:
AnisotropyDatasetPath = fullfile(matlabroot,'Training', 'Anisotropy');
IsotropyDatasetPath = fullfile(matlabroot,'Training', 'Isotropy');
FillerDatasetPath = fullfile(matlabroot,'Training', 'Filler');
TrainingDatasetPath = fullfile(matlabroot,'Training');
imds = imageDatastore(TrainingDatasetPath, 'IncludeSubfolders',true,...
'LabelSource','foldernames');
labelCount = countEachLabel(imds)
numTrainFiles = 999;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
layers = [
imageInputLayer([227 227 3])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(3)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)
thanks!
0 Kommentare
Akzeptierte Antwort
Vinai Datta Thatiparthi
am 3 Feb. 2020
Hey Teshan,
After you train a neural network for deep learning using trainNetwork into net, follow this procedure:
Hope this helps!
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!