How to calculate the accuracy of the classifier ? and show the confusion matrix.

4 Ansichten (letzte 30 Tage)
I had implemented a simple face recognition code. how to calculate its accuracy? and how to plot the confusion matrix .
clc
clear
% Load Image dataset
faceDatabase = imageSet('facedatabaseatt','recursive');
%splitting into training and testing sets
[training,test] = partition(faceDatabase,[0.8 0.2]);
% Extract HOG Features for training set
featureCount = 1;
for i=1:size(training,2)
for j = 1:training(i).Count
trainingFeatures(featureCount,:) = extractHOGFeatures(read(training(i),j));
% imshow(read(training(i),j));
%pause(0.0011);
trainingLabel{featureCount} = training(i).Description;
featureCount = featureCount + 1;
end
personIndex{i} = training(i).Description;
end
% Create 40 class classifier
faceClassifier = fitcknn(trainingFeatures,trainingLabel);
%testing
for person=1:40
for j = 1:test(person).Count
queryImage = read(test(person),j);
queryFeatures = extractHOGFeatures(queryImage);
actualLabel = predict(faceClassifier,queryFeatures) %actuallabel
C=test(person).Description; % predictedlabel
predictedLabel= cellstr(C) %converting into cell array
end
end

Antworten (1)

Hitham
Hitham am 25 Sep. 2020
confusionmat computes the Confusion matrix as.
[cm,order] = confusionmat(actualLabel,predictedLabel);
Or, you can use my function.
function [c_matrix]=confusionmat1(actual,predict)
% It computes confusion matrix
classList=unique(actual);
N=length(classList);
cm = zeros(N,N);
for j=1:length(actual)
posClassGT = strmatch(actual{j}, classList, 'exact');
posClass = strmatch(predict{j}, classList, 'exact');
cm(posClassGT,posClass) = cm(posClassGT,posClass) + 1;
end
end

Kategorien

Mehr zu Pattern Recognition and Classification finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by