Info

Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.

Matlab taking so much execution time

3 Ansichten (letzte 30 Tage)
AVM
AVM am 27 Jan. 2020
Geschlossen: MATLAB Answer Bot am 20 Aug. 2021
I have a simple code here. But whenever I try to run this code, the system gets slower and start to hang frequently. Moreover, the run process seems to be never ending. Hence I forcefully shut down the pc several time. Pl , somebody see my code and solve the problem. Actually here, I am trying to get a 3d plot.
clc;clear;
syms theta phi b k alpha
alpha=1;
b=1;
sigma1=[0 1;1 0];
sigma2=[0 -1i;1i 0];
sigma3=[1 0;0 -1];
sigmap=1/2*(sigma1+1i*sigma2);
sigmam=1/2*(sigma1-1i*sigma2);
I=eye(2);
n=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];
a=sigma1*sin(theta)*cos(phi)+sigma2*sin(theta)*sin(phi)+sigma3*cos(theta);
d=kron(sigmap,sigmap)+kron(sigmam,sigmam);
h=1/2*alpha*b*kron(a,I)+k*d; %% a 4*4 matrix
[V,L]=eig(h);
u=V(:,1)./sqrt(sum(V(:,1).^2)); %%To make the normalization to the one of the eigen vector of h.
w=diff(u,phi); %% Derrivative of that eigen vector with respect to phi variable.
r=dot(u,w);
assume(theta>=0);
assume(phi>=0);
r=simplify(r,'Steps',100);
f=1/pi*1i*int(r,phi,0,2*pi);
f=simplify(f,'Steps',100);
ffcn=matlabFunction(f);
theta = linspace(0.001,4, 30);
k = linspace(0.001,10, 30);
[Th,K] = meshgrid(theta, k);
F=ffcn(Th,K);
figure
mesh(Th,K, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
  7 Kommentare
AVM
AVM am 30 Jan. 2020
@walter: I was trying without any optimization in the following code according to your advice, but without optimisation is taking more than 1day to excute but the execution yet not completeed.. It's really painful for me. Pl help me.
clc;clear;
syms theta phi b k alpha
alpha=1;
b=1;
sigma1=[0 1;1 0];
sigma2=[0 -1i;1i 0];
sigma3=[1 0;0 -1];
sigmap=1/2*(sigma1+1i*sigma2);
sigmam=1/2*(sigma1-1i*sigma2);
I=eye(2);
n=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];
a=sigma1*sin(theta)*cos(phi)+sigma2*sin(theta)*sin(phi)+sigma3*cos(theta);
d=kron(sigmap,sigmap)+kron(sigmam,sigmam);
h=1/2*alpha*b*kron(a,I)+k*d; %% a 4*4 matrix
[V,L]=eig(h);
u=V(:,1)./sqrt(sum(V(:,1).^2)); %%To make the normalization to the one of the eigen vector of h.
w=diff(u,phi); %% Derrivative of that eigen vector with respect to phi variable.
r=dot(u,w);
f=1/pi*1i*int(r,phi,0,2*pi);
theta = linspace(0.001,4, 30);
k = linspace(0.001,10, 30);
[Th,K] = meshgrid(theta, k);
F=f(Th,K);
figure
mesh(Th,K, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
Walter Roberson
Walter Roberson am 30 Jan. 2020
Shrug. Get yourself a much much faster computer. Something overclocked and cooled with liquid nitrogen perhaps.

Antworten (1)

AVM
AVM am 28 Jan. 2020
Thanks..okay,I am leaving it without any optimization (simplify() kind of thing) whole night.let see what happen...

Diese Frage ist geschlossen.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by