how to fit exponential distribution function on data?

13 Ansichten (letzte 30 Tage)
Mos_bad
Mos_bad am 25 Jan. 2020
Beantwortet: Image Analyst am 26 Jan. 2020
The vector m follows the truncated exponential equation (F_M) and it is shown by solid black line in figure. I intend to fit an exponential distribution function to data and find the parameter lambda (1/mean). Even though I've used fitdist(x,distname), the fitted exp. dist. shown in dashed line which is way different from the data. here is the code:
M_min=4.5; M_max=8.0;
m=M_min:0.0001:M_max;
a=4.56; b=1.0;
alpha=a*log(10);beta=b*log(10);
nu=exp(alpha-beta*M_min);
F_M=(1-exp(-beta*(m-M_min))) / (1-(exp(-beta*(M_max-M_min)))); % CDF of Mag.
pd = fitdist(m','Exponential');
figure(1); plot(m,1-F_M,'-','linewidth',2);
hold on; plot(m,1-cdf(pd,m),'--');
legend('data','fitted dist')
  2 Kommentare
Walter Roberson
Walter Roberson am 25 Jan. 2020
a and b are not defined in the third line.
Mos_bad
Mos_bad am 25 Jan. 2020
just editted. thanks for pointing that out.

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Walter Roberson
Walter Roberson am 26 Jan. 2020
You do not have an exponential distribution. (1 minus an exponential) is not an exponential.
On the other hand if you fit using the equation
a*exp(-b*x)+c
instead of
a*exp(-b*x)
then you get pretty much a perfect fit.
  1 Kommentar
Mos_bad
Mos_bad am 26 Jan. 2020
All I want to do is to devide vertical axis to 1000 intervals and pick a random value of magnitude (horizental axis) at each interval. Kind of Latin hypercube sampling.

Melden Sie sich an, um zu kommentieren.


Image Analyst
Image Analyst am 26 Jan. 2020

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by