Issues with polynomial fit
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Adil Hussain
am 24 Jan. 2020
Kommentiert: Valeria Alejandra
am 19 Sep. 2024
I have a problem coding the best fit for these data
D=[0.5 5 10 100 1000];
y1=[1.56 2.12 4.34 7.13 10.22];
y2=[1.3 2.08 4.1 6.45 12.93].';
Thois below is the output

The polynomial fit works well for large values but for small values of D (e.g 0.5, 5) which is x-axis in my case, its weird. Please suggest me some best fit for this data. I made this code but it is not efficient
D=[0.5 5 10 100 1000].';
y1=[1.56 2.12 4.34 7.13 10.22].';
y2=[1.3 2.08 4.1 6.45 12.93].';
figure();
p1 = polyfit(D,y1,1); x1 = 0.5:0.001:1000; z1 = polyval(p1,x1);
semilogx(D,y1,'ro','MarkerEdgeColor','r','MarkerFaceColor','r',...
'MarkerSize',6); hold on;
semilogx(x1,z1,'r-','MarkerEdgeColor','r','MarkerFaceColor','r',...
'MarkerSize',6); hold on;
p2 = polyfit(D,y2,1); x2 = 0.5:0.001:1000; z2 = polyval(p2,x2);
semilogx(D,y2,'ko','MarkerEdgeColor','k','MarkerFaceColor','k',...
'MarkerSize',6);
semilogx(x2,z2,'k','MarkerEdgeColor','k','MarkerFaceColor','k',...
'MarkerSize',6);
title('Test','FontSize',16);
axis([0.5 1000 0.0 14]);
xlabel('X','FontSize',16);
ylabel('Y','FontSize',16)
0 Kommentare
Akzeptierte Antwort
Spencer Chen
am 24 Jan. 2020
You are fitting an order-1 polynomial, i.e. linear, so it is a bad fit. Try higher orders. But it looks like a different function will fit your data better.
Blessings,
Spencer
3 Kommentare
Valeria Alejandra
am 19 Sep. 2024
You could try linear interpolation. It is literally "linear" but no "order-1 polynomial" haha, but it is not good for extrapolating data
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!