3x3 matrix with while loop

2 Ansichten (letzte 30 Tage)
Benjamin Trivers
Benjamin Trivers am 21 Jan. 2020
Kommentiert: Jeremy am 21 Jan. 2020
Produce a random 3x3 matrix A that is invertible and display it. Hint: Use a while-loop until you get one with non-zero determinant. To create a random matrix with N rows and M columns,use the MATLAB command rand(N,M).
I know how to produce the 3x3 matrix and how to display it. I am just a little confused on how to use the while-loop. Can someone please help me?
  2 Kommentare
Alex Mcaulley
Alex Mcaulley am 21 Jan. 2020
determinant = 0;
while determinant == 0
%Generate the random matrix
%Calculate the determinant of that matrix
end
Benjamin Trivers
Benjamin Trivers am 21 Jan. 2020
I made a script for this one, and it just ran forever
I need it to stop if the determinate = 0

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Jeremy
Jeremy am 21 Jan. 2020
n = 3; m = 3;
A = zeros(n,m);
while det(A) == 0
A = rand(n,m);
end
  4 Kommentare
Benjamin Trivers
Benjamin Trivers am 21 Jan. 2020
just a little confused. the end of the question stated "Use disp to print matrices" so i thought i was looking for more than one matrix
sorry just confused
Jeremy
Jeremy am 21 Jan. 2020
Using rand, it's fairly unlikely that you'll create a matrix whose determinant is 0. It'd probably be easier to get a 0 determinant with randi
That being said, maybe running this will help you see what's going on
n = 3; m = 3;
A = zeros(n,m);
k = 0;
while det(A) == 0
A = rand(n,m);
k = k + 1;
fprintf(1,'\nIteration Number %i \n',k)
fprintf(1,' Matrix A = \n\n')
disp(A)
fprintf(1,'The Determinant of Matrix A is: \n')
disp(det(A))
end
And if you wanted an (approximately) zero determinant:
n = 3; m = 3;
A = eye(n,m);
k = 0;
while abs(det(A)) > 0.001
A = rand(n,m);
k = k + 1;
fprintf(1,'\nIteration Number %i \n',k)
fprintf(1,' Matrix A = \n\n')
disp(A)
fprintf(1,'The Determinant of Matrix A is: \n')
disp(det(A))
end
Using randi instead:
n = 3; m = 3;
A = eye(n,m);
k = 0;
while det(A) ~= 0
A = randi([0 10],n,m);
k = k + 1;
fprintf(1,'\nIteration Number %i \n',k)
fprintf(1,' Matrix A = \n\n')
disp(A)
fprintf(1,'The Determinant of Matrix A is: \n')
disp(det(A))
end
I hope this helps

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by