Evaluating svd() on slice of matrix array.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have an array of matrices such that
size(A) == [3, 3, 1e3]
for example. These 1000 [3x3] matrices must be orthonormal so I am attempting to project each one to the nearest orthonormal basis, using svd() and the approximation
This function is made to work on a single [3x3] matrix at a time however. A workaround could be using for loops like
[~,~,np] = size(A);
for i=1:np
[U,~,V] = svd(A(:,:,i));
A(:,:,i) = U*V';
end
but this function will be called very often with high numbers of matrices so I am attempting to make efficient. Is there a better way to do this?
0 Kommentare
Antworten (1)
David Goodmanson
am 23 Jan. 2020
Bearbeitet: David Goodmanson
am 23 Jan. 2020
Hi Morten
I take it that your matrices are close to being orthonomal already. Try
[Q, ~] = qr(A(:,:,i));
A(:,:,i) = Q;
which is about three times faster, not counting overhead to read and write to A(:,:,i). The result is slightly different, but of course still orthogonal.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!