- Indent your code so it can be read more easily
- first loop isn't needed--replace
function to resolve Ax=B
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, Can you help me to resolve Ax=B by gauss elimination in matlab with
A =
-2.1000 -0.5000 -0.9000 -1.9000 1.2000 0.1000
0.6000 0 -1.9000 2.4000 -1.7000 0.2000
2.0000 -0.5000 0 -0.2000 0.4000 -0.5000
2.2000 0.1000 1.2000 0.4000 0.5000 0.7000
3.3800 0.6400 -3.4100 4.0800 -1.8900 1.4600
-0.2300 -0.1900 0.2300 2.6700 -2.7600 -1.1300
-0.6400 -0.1400 -1.0500 0.0200 -0.0200 0.2200
b =
-0.8000
-0.8000
0.7000
1.7000
1.4000
-2.3600
-0.4600
Here is what i have done , but i have an error : Index in position 2 exceeds array bounds (must not exceed 7).
function x = GAUSS_ELIM(A, b)
%% Create permutation vector
n = size(A, 1); % Size of input matrix
r = zeros(n, 1); % Initialize permutation vector
for i = 1 : 1 : n
r(i) = i;
end
%% Apply Gaussian elimination and rearrange permutation vector
x = zeros(n, 1); % Initialize solution vector
for k = 1 : 1 : n % Go through each element in permutation vector
% Compare each element in r(k)th column for the max
max = abs(A(r(k), r(k)));
max_pos = k;
for l = k : 1 : n
if abs(A(r(l), r(k))) > max
max = abs(A(r(l), r(k)));
max_pos = l;
end
end
% Switch the kth r-vector element with max r-vector element
temp_r = r;
r(k) = temp_r(max_pos);
r(max_pos) = temp_r(k);
% Eliminate A-vector elements in r(k)th column below r(k)th row
for i = 1 : 1 : n
if i ~= k
zeta = A(r(i), k) / A(r(k), k);
for j = k : 1 : n
A(r(i), j) = A(r(i), j) - A(r(k), j) * zeta;
end
b(r(i)) = b(r(i)) - b(r(k)) * zeta;
end
end
end
% Compute the solution frpm the diagonalized A-matrix
for i = 1 : 1 : n
x(i) = b(r(i)) / A(r(i), i);
end
end
4 Kommentare
dpb
am 19 Jan. 2020
OK, so k is outside bounds of A.
BUT, that error is for a function gauss while your function above is named |GAUSS_ELIM| and the above code line doesn't exist in that function.
You're debugging/executing different function than you think you are, apparently.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!