Dealing with symbolic parameter in a DAE

5 Ansichten (letzte 30 Tage)
Christopher Lamb
Christopher Lamb am 15 Jan. 2020
Kommentiert: Christopher Lamb am 29 Jan. 2020
Hello!
I've been using the Mass Matrix Solvers page to create a ODE solver for a mass matrix that I'm using for a piston.
However, I've come across a hickup where I get an error due to a symbolic parameter being in the DAE eqn.
Here since a screenshot of the matrix:
On the left matrix you can see in the third row, the specific heat is the parameter that I mentioned.
Here is the error I'm getting:
Error using mupadengine/feval (line 187)
Found symbolic object 'Cv' in DAEs. Only variables and declared parameters can be symbolic
What I'm asking is how am I able to create a work around for this.
  2 Kommentare
Star Strider
Star Strider am 15 Jan. 2020
Code?
Christopher Lamb
Christopher Lamb am 16 Jan. 2020
syms p(theta) m(theta) T(theta) W(theta) Q(theta) V(theta) Cv mdotin...
mdotex mdotleak Cp Tair Qdotrxn Qdotloss omega B L a
eqn1 = diff(p(theta), 1)/p(theta)-diff(m(theta), 1)/m(theta)...
-diff(T(theta),1)/T(theta)+diff(V(theta), 1)/V(theta) == 0;
eqn2 = diff(m(theta), 1) == 1/omega*(mdotin - mdotex - mdotleak);
eqn3 = Cv*T(theta)*diff(m(theta), 1)+Cv*m(theta)*diff(T(theta), 1)...
-diff(Q(theta), 1)+diff(W(theta), 1) == 0;
eqn4 = diff(W(theta), 1)-p(theta)*diff(V(theta), 1) == 0;
eqn5 = diff(Q(theta), 1) == 1/omega*(mdotin*Cp*Tair-mdotex*Cp*T(theta)...
-mdotleak*Cp*T(theta)+Qdotrxn-Qdotloss);
eqn6 = diff(V(theta), 1) == 1/omega*((B^2*pi*(a*sin(theta) +...
(a^2*cos(theta)*sin(theta))/(- a^2*sin(theta)^2 + L^2)^(1/2)))/4);
eqns = [eqn1 eqn2 eqn3 eqn4 eqn5 eqn6];
vars = [p(theta); m(theta); T(theta); W(theta); Q(theta); V(theta)];
origVars = length(vars);
[DAEs,DAEvars] = reduceDAEIndex(eqns,vars)
[M,f] = massMatrixForm(DAEs,DAEvars)
pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs,pDAEvars)
M = odeFunction(M, DAEvars);
f = odeFunction(f, DAEvars,Cv,mdotin,mdotex,mdotleak,Cp,Tair,...
Qdotrxn,Qdotloss,omega, B, L, a);
Cv = 0.718;
mdotin = 0;
mdotex = 0;
mdotleak = 0;
Cp = 1.005;
Tair = 273+21;
Qdotrxn = 0;
Qdotloss = 0;
B = 86;
L = 50;
a = 150;
F = @(theta, Y) f(theta, Y, Cv, mdotin, mdotex, mdotleak, Cp, Tair, Qdotrxn,...
Qdotloss, omega, B, L, a);

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Guru Mohanty
Guru Mohanty am 23 Jan. 2020
Hi, I understand you are trying to solve DAEs Using Mass Matrix Solvers. The error is due to missing input argument of the odeFunction. However, I can get solutions to these DAEs considering zero initial condition. Here is the code for it.
clc;
clear all;
syms p(theta) m(theta) T(theta) W(theta) Q(theta) V(theta) Cv mdotin...
mdotex mdotleak Cp Tair Qdotrxn Qdotloss B L a
eqn1 = diff(p(theta), 1)/p(theta)-diff(m(theta), 1)/m(theta)...
-diff(T(theta),1)/T(theta)+diff(V(theta), 1)/V(theta) == 0;
eqn2 = diff(m(theta), 1) == (mdotin - mdotex - mdotleak);
eqn3 = Cv*T(theta)*diff(m(theta), 1)+Cv*m(theta)*diff(T(theta), 1)...
-diff(Q(theta), 1)+diff(W(theta), 1) == 0;
eqn4 = diff(W(theta), 1)-p(theta)*diff(V(theta), 1) == 0;
eqn5 = diff(Q(theta), 1) == (mdotin*Cp*Tair-mdotex*Cp*T(theta)...
-mdotleak*Cp*T(theta)+Qdotrxn-Qdotloss);
eqn6 = diff(V(theta), 1) == ((B^2*pi*(a*sin(theta) +...
(a^2*cos(theta)*sin(theta))/(- a^2*sin(theta)^2 + L^2)^(1/2)))/4);
eqns = [eqn1 eqn2 eqn3 eqn4 eqn5 eqn6];
vars = [p(theta); m(theta); T(theta); W(theta); Q(theta); V(theta)];
origVars = length(vars);
[DAEs,DAEvars] = reduceDAEIndex(eqns,vars);
[M,f] = massMatrixForm(DAEs,DAEvars);
pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs,pDAEvars);
M = odeFunction(M, DAEvars,Cv);
f = odeFunction(f, DAEvars,Cv,mdotin,mdotex,mdotleak,Cp,Tair,...
Qdotrxn,Qdotloss, B, L, a);
Cv = 0.718;
mdotin = 0;
mdotex = 0;
mdotleak = 0;
Cp = 1.005;
Tair = 273+21;
Qdotrxn = 0;
Qdotloss = 0;
B = 86;
L = 50;
a = 150;
F = @(theta, Y) f(theta, Y, Cv, mdotin, mdotex, mdotleak, Cp, Tair, Qdotrxn,...
Qdotloss, B, L, a);
% Zero Initial Condition
y0=zeros(6,1);
% Solve System of ODE
[tSol,ySol] = ode15s(F, [0, 0.5], y0,0);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
S{k} = char(DAEvars(k));
end
grid on
ode15s_case.jpg

Weitere Antworten (0)

Kategorien

Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by