splitting dataset into training set and testing set
40 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Munshida P
am 14 Jan. 2020
Kommentiert: Ruaa waleed
am 14 Dez. 2021
I have 400 images in my dataset(images).I want to split the dataset into 80% for training and 20% for testing.the below attached code works but , test_idx is empty?why?
train_idx contains 320 images.test_idx is empty.
clc
clear
% Load Image dataset
faceDatabase = imageSet('facedatabaseatt','recursive');
%splitting into training and testing sets
N = 400; % number of images
idx = 1:N ;
PD = 0.80 ;
train_idx = idx(1:round(PD*N)); % training indices
test_idx = idx(round(PD*N)+1:end,:) ; % test indices
0 Kommentare
Akzeptierte Antwort
Akira Agata
am 15 Jan. 2020
[setTrain, setTest] = partition(faceDatabase, [0.8, 0.2], 'randomized');
6 Kommentare
Ruaa waleed
am 14 Dez. 2021
please i split image data base but icant find [imgSetTrain, imgSetTest] how ican make output .txt
clc
F = fullfile('g:','iris-recognition---pm-diseased-human-driven-bsif-main','casia 2 device1');
imds = imageDatastore(F,'IncludeSubfolders',true,'LabelSource','foldernames');
labelCount = countEachLabel (imds)
% Choose first 8 images from each folder and set them to training dataset, and 2 images for test dataset
numTrainFiles= 0.8
% If you want to choose 8 and 2 images from each folder randomly, please set 'randomized' option
[imgSetTrain, imgSetTest] = splitEachLabel(imds,numTrainFiles);
Weitere Antworten (0)
Siehe auch
Kategorien
Find more on Image Segmentation and Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!