Obtain a transfer function form a 2nd order D.E. using the Lapalce Transforms

2 Ansichten (letzte 30 Tage)
Hello,
(Using MATLAB) Is it possible to obtain a transfer function H(s) from a 2nd order D.E. using the Laplace Transfroms?
The D.E. is; d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
Thanks!

Akzeptierte Antwort

Star Strider
Star Strider am 13 Jan. 2020
It is, however it takes some effort and a bit of manual intervention in the end:
% d^2y(t)/dt^2 + 7.6*dy(t)/dt + 4.2*y(t) = x(t)
syms s t x(t) y(t) X(s) Y(s)
assume(X(s) ~= 0)
DE = diff(y,2) + 7.6*diff(y,1) + 4.2*y == x;
LDE = laplace(DE,t,s);
LDE = subs(LDE, {laplace(y, t, s), subs(diff(y(t), t), t, 0), laplace(x(t), t, s), y(0)},{Y(s), 0, X(s), 0})
LDETF = simplify( LDE, 'Steps',250)
LDETF = subs(LDETF,{X,Y},{1,1})
LDETF = ((5*s + 3)*(s + 7))/5
s = tf('s');
H = ((5*s + 3)*(s + 7))/5 % Copy ‘LDETF’ Result From Command Window & Paste Here
bode(H)
  4 Kommentare

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by