Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
My answer is not matching with attached file
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
syms k r
a=sym('a'); b = sym('b');L=sym('L'); M = sym('M'); b1 = sym('b1');
m=7; F = sym(zeros(m,1)); F(1)=0; F(2)=1; F(3)=a;
G = sym(zeros(m,1)); G(1)=0; G(2)=1/2; G(3)=b;
for k=1:7
for r = 1:k
F3 = F(1)+ F(2)+F(3); G3 = G(1)+G(2)+G(3);
F(k+3)= ( F3+sum((r+1)*F(r+1)*(k-r+1)*F(k-r+1)) - sum((k-r+1)*(k-r+2)*F(k-r+1)*(F(r)+G(r)))+ (M+L)*(k)*F(k+1))/((1+b1)*(k+1)*(k+2)*(k));
G(k+3) = (G3+ sum((r+1)*G(r+1)*(k-r+1)*G(k-r+1)) - sum((k-r+1)*(k-r+2)*G(k-r+2)*(F(r)+G(r))) + (M+L)*(k)*G(k+1))/((1+b1)*(k+1)*(k+2)*(k));
end
end
% %%%%%
for N=1:6
disp(F(N))
disp(G(N))
end
f=sum(x^k*F(k),k,0,7)
g=sum(x^k*G(k),k,0,7)
%%%%%%%
Any reply will be greatly appreciated
After getting F(N) and G(N), I neeed to find then f and g
8 Kommentare
Walter Roberson
am 14 Jan. 2020
You have not posted the recurrence formula, so we are restricted to pointing out parts of the code that look suspicious, without being able to make any suggestions as to what code would work.
Antworten (0)
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!