how to solve the nonlinear equatios?

1 Ansicht (letzte 30 Tage)
M.Rameswari Sudha
M.Rameswari Sudha am 2 Jan. 2020
Kommentiert: VBBV am 7 Mär. 2024
syms T v
p=30;a=7;d=1;lamda=0.8;c=10;r=35;h=0.05;w=200;k=0.02;b=7;
M=k*a;
%eqn1=(1/T)*(p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h)))==0'
%eqn2=((1/T)*(-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1))== 0
eqns = solve('((1/T)*(p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h)))==0','((1/T)*(-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1))== 0');
solve(eqns,T,v)
  4 Kommentare
KSSV
KSSV am 2 Jan. 2020
YOu cannot use solve at the step eqns = . What are the equations exactly? Can you explain the problem.
M.Rameswari Sudha
M.Rameswari Sudha am 2 Jan. 2020
Bearbeitet: M.Rameswari Sudha am 2 Jan. 2020
I have two equations equation1 & equation2. I couldn't find the value of T and v.
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=200;k=0.02;b=7;a =0.01;
W= k*(1-exp(-a*chi));
M=k*a;
equation1=(1/T)*[(p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h))]=0
equation2=(1/T)*[-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1]= 0
solve equation1 and equation2 and find the value of T and v from equation1 and equation2

Melden Sie sich an, um zu kommentieren.

Antworten (1)

KSSV
KSSV am 2 Jan. 2020
Try this.
syms v T
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=200;k=0.02;b=7;a =0.01;
w = k*(1-exp(-a*chi));
M=k*a;
equation1=(1/T)*[(p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h))]==0 ;
equation2=(1/T)*[-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1]== 0 ;
eqns = [equation1, equation2] ;
S = solve(eqns,[ T v]) ;
  2 Kommentare
M.Rameswari Sudha
M.Rameswari Sudha am 2 Jan. 2020
Again I get the same problem. I got the output as S =
[ empty sym ]
VBBV
VBBV am 7 Mär. 2024
syms v T
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=200;k=0.02;b=7;a =0.01;
w = k*(1-exp(-a*chi));
M=k*a;
equation1=(1/T)*[(p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h))]==0 ;
equation2=(1/T)*[-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1]== 0 ;
eqns = [equation1, equation2] ;
S = vpasolve(eqns,[ T v])
S = struct with fields:
T: -2.8001867614296615890192299028898e+35 v: 94.487666301429982566887966097196

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by