cnn for feature extraction

16 Ansichten (letzte 30 Tage)
Athulya N
Athulya N am 13 Dez. 2019
Beantwortet: Shahram Taheri am 19 Jul. 2022
i am doing project on image classification.i have converted image in R,G and B channels.now i need to extract features from each channel using cnn.how can i use cnn for feature extraction in image.

Antworten (3)

Sourav Bairagya
Sourav Bairagya am 16 Dez. 2019
As you have your RGB images ready, then you can define your custom convolutional neural network using 'dlNetwork' object and train it to extract features out of it.
For training you can leverage this link:
For extracting feature from the trained network, use 'predict' function. To know more about this leverage this link:

esther MUKOYA
esther MUKOYA am 25 Jan. 2021
Kindly could you share on the method used to convert the images to RGB?

Shahram Taheri
Shahram Taheri am 19 Jul. 2022
Hi,
imds = imageDatastore('Your Dataset PATH', ...
'IncludeSubfolders',true,'LabelSource','foldernames');
imds = shuffle(imds);
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);
net = resnet18;
%net=densenet201;
inputSize = net.Layers(1).InputSize;
%analyzeNetwork(net)
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain,'ColorPreprocessing','gray2rgb');
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsValidation,'ColorPreprocessing','gray2rgb');
layer = 'pool5';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');
YTrain = imdsTrain.Labels;
YTest = imdsValidation.Labels;
classifier = fitcecoc(featuresTrain,YTrain);
YPred = predict(classifier,featuresTest);

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by