ODE solver - division by zero at time boundaries

6 Ansichten (letzte 30 Tage)
Bastian Andersen
Bastian Andersen am 12 Dez. 2019
Beantwortet: darova am 16 Dez. 2019
Hi
I have a problem when solving my system of ODEs. I simplified it to what I find essential for the problem.
As I see it, the problem is at t = 0, y(1,2) = 0 , whereas dy(2:end,2) = NaN AND at t = p.t_empty, y(1,1) = 0, whereas dy(2:end,1) = NaN
This is however the time interval I am interested in the solution for. It is essentially a system of two tanks. A reaction occurs in tank 1 and the matter is transferred to tank 2 meanwhile.
Do you have any suggestions to how I can solve this?
p.Q = 40;
p.Q_R = 150;
p.V = 20;
p.n = 101;
p.t_empty = p.V/p.Q;
y0 = zeros(p.n*2+2,1);
y0(1:2) = [p.V, 1];
options = odeset('RelTol',1e-12,'AbsTol',1e-12);
[t,y] = ode45('ODE_tank',[0,p.t_empty],y0,options,p);
figure(1)
plot((0:p.n-1),y(end,2:p.n+1))
figure(2)
plot((0:p.n-1),y(end,p.n+3:end))
function dy = ODE_tank(t,y,options,p)
y = reshape(y,[],2);
dy = zeros(size(y));
dy(1,1) = -p.Q;
dy(2,1) = -p.Q_R/y(1,1)*y(2,1);
dy(3:p.n,1) = p.Q_R/y(1,1)*(y(2:p.n-1,1) - y(3:p.n,1));
dy(p.n+1,1) = p.Q_R/y(1,1)*y(p.n,1);
dy(1,2) = p.Q;
dy(2:end,2) = p.Q/y(1,2)*(y(2:end,1)-y(2:end,2));
dy = reshape(dy,[],1);
end
  2 Kommentare
darova
darova am 13 Dez. 2019
  • As I see it, the problem is at t = 0, y(1,2) = 0
Can you replace 0 with 1e-3?
Bastian Andersen
Bastian Andersen am 16 Dez. 2019
This works, thank you. How do I accept this as the answer?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

darova
darova am 16 Dez. 2019
  • As I see it, the problem is at t = 0, y(1,2) = 0
Can you replace 0 with 1e-3?

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by