creating a transfer function from a determinant
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Michael Gibson
am 2 Dez. 2019
Kommentiert: Michael Gibson
am 2 Dez. 2019
Hey Guys,
So I'm trying to create a transfer function in matlab using the determinants and state space equations via linear algebra. The thing is I can manually pull the coefficients out of the results and plug them into the tf command, but I have to fiddle with the input numbers to get the desired result, so I'd rather not have to manually plug that in every time. Any suggestions?
syms s
m = 5;
k = 10;
b = 50;
m_c = 0.1*m;
k_c = k;
b_c = b;
R_wc = 10;
T_c = 10;
H = (b_c*R_wc)/(b_c*R_wc+T_c^2);
V_1 = det([-(H*T_c^2-b)/R_wc -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
1 s 0 0; ...
-H*T_c^2/R_wc 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
-H*T_c^2/(b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
V_2 = det([H*T_c/R_wc -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
0 s 0 0; ...
H*T_c/R_wc 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
H*T_c/(b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
den = det([s-(H*T_c^2-b*R_wc)/(m*R_wc) -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
1/m s 0 0; ...
-H*T_c^2/(m*R_wc) 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
-H*T_c^2/(m*b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
G_vel = vpa(V_1/den,10)
G_vel_tf = tf([4.257211935 242.9349118 271.8731897 0.07907120546],[-1.0 19.8925608 269.8083056 54.43899276 0.01581424109]);
0 Kommentare
Akzeptierte Antwort
David Wilson
am 2 Dez. 2019
How about:
[num,den] = numden(G_vel)
G_vel_tf = tf(sym2poly(num), sym2poly(den))
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Financial Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!