Calculating a surface integral over a regular shape
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Oussama GASSAB
am 22 Nov. 2019
Bearbeitet: Oussama GASSAB
am 24 Nov. 2019
let's suppose a function given in polar coordinate F(r,phi) and our purpose is to calculate the surface integral, say F(r,phi)dA over the region S defined by
S={ |Z|<b , |z-z0|>a } where Z=r*exp(1j*phi). it means the regions between the circles |Z|=b , |z-z0|=a . However, F(r,phi) has singularities inside the circle |z-z0|=a . therefore, we are not able to use integral(over circle |Z|<b )-integral(over circle |z-z0|<a) .
your help and consideration are much appreciated.
3 Kommentare
David Goodmanson
am 24 Nov. 2019
Hi Oussama,
I am assuming that z and Z are basically the same thing, is that correct? Are z0 and 'a' such that the 'a' circle is totally contained in the b circle? Or the other way round? Is z0 real, or can it be complex?
Akzeptierte Antwort
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!