solving a coupled pde by reducing it into coupled ode

5 Ansichten (letzte 30 Tage)
SDO
SDO am 16 Nov. 2019
Beantwortet: SDO am 16 Nov. 2019
Hi all
I am solving a highly nonlinear PDE y_t=[R(y,t)]_x by applying [R_(i+1/2) - R_(i-1/2)] / dx , reducing it to an ODE, and solving it with ode23tb, which works nicely.
However, when I try to do the same for a coupled system, y1=[R(y1,y2,t)]_x , y2=[Q(y1,y2,t)]_x it fails.
The sample code for the single equation is below, solving for periodic BC: ( y_t=[y^2y_xxx]_x )
Thanks in advance.
function sample
global N L
N = 51;L = 2*pi*wn;x = linspace(0,L,N);
st=10;ft=100;t = 0:st:ft;fin=ft/st;
y0 = 1-0.1*cos(x);
% sparsity matrix for the Jacobian
e = ones(N,1);S = spdiags([e e e e e], -2:2,N,N);
options = odeset('RelTol',1e-4,'AbsTol',1e-20, 'JPattern',S,'BDF','on');
[t,h] = ode23tb(@r,t,y0,options);
plot(x,h(fin,:),x,h(1,:),'--','LineWidth',2)
axis([0 L 0 2])
function yt = r(t,y)
global N L
yt0=size(N);
dx = L/(N-1);a2=-1/(2*dx^4);
r1=y.^2;
y(N+1) = y(2);y(N+2) = y(3);r1(N+1) = r1(2);
for i = 3:N
yt0(i)=a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-y(i-1))-...
a2*(r1(i) + r1(i-1))*(y(i+1)-3*y(i)+3*y(i-1)-y(i-2));
end
hm=y(N-1);hmm=y(N-2);r1m=r1(N-1);
i=1;
yt0(i) = (a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-hm)-...
a2*(r1(i) + r1m)*(y(i+1)-3*y(i)+3*hm-hmm));
i=2;
yt0(i) = (a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-y(i-1))-...
a2*(r1(i) + r1(i-1))*(y(i+1)-3*y(i)+3*y(i-1)-hm));
yt = yt0';

Akzeptierte Antwort

SDO
SDO am 16 Nov. 2019

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by