DAE ode15s coupled initial conditions / boundary condition
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi guys,
I try to solve differential-algebraic equations - which is basicly describing the dissociation of some Acid in water with another Base.
The Systems looks like this:
%Initial conditions
initital_c_C0 = 0;
initital_c_C1 = 0;
initital_c_C2 = 0;
initital_c_H = 0;
initital_c_Na = 0;
initital_c_OH = 0;
initital_c_NaOH = 0;
initital_F_IA = 0.5;
initital_F_NaOH = 1;
%% Definition of differential-algebraic equation system using the so called mass matrix M(t,y)*y' = f(t,y)
N = zeros(9);
for i = 1 : (7)
N(i,i) = 1;
end
M=sparse(N);
%% Call of the ode-solver
% feeding
startvector = [initital_c_C0; initital_c_C1; initital_c_C2; initital_c_H; initital_c_Na; initital_c_OH; initital_c_NaOH; initital_F_NaOH; initital_F_IA];
disp('Start ODE15S');
t_end = 7;
time_interval = [0:1:t_end];
options = odeset('Mass', M, 'RelTol', 1e-5, 'Abstol', 1e-5, 'MStateDependence', 'weak', 'MassSingular','yes');
And my DAE
%% Startvector
c_C0 = startvector(1);
c_C1 = startvector(2);
c_C2 = startvector(3);
c_H = startvector(4);
c_OH = startvector(5);
c_Na = startvector(6);
c_NaOH = startvector(7);
F_Na = startvector(8);
F_IA = startvector(9);
%% DAE
% reaction rates
f(1,:) = f_1^2 * k_1_R * c_C1 * c_H - f_1 * k_1_H * c_C0;
f(2,:) = f_2 * f_1 * k_2_R * c_C2 * c_H - f_1 * k_2_H * c_C1 - f_1^2 * k_1_R * c_C1 * c_H + f_1 * k_1_H * c_C0;
f(3,:) = - f_2 * f_1 * k_2_R * c_C2 * c_H - f_1 * k_2_H * c_C1;
f(4,:) = - f_1^2 * k_1_R * c_C1 * c_H + f_1 * k_1_H * c_C0 - f_2 * f_1 * k_2_R * c_C2 * c_H + f_1 * k_2_H * c_C1 + k_w_H - f_1^2 * k_w_R * c_H * c_OH;
f(5,:) = k_w_H - f_1^2 * k_w_R * c_H * c_OH;
f(6,:) = k_Na_H * c_NaOH - k_Na_R * f_1^2 * c_Na * c_OH;
f(7,:) = - k_Na_H * c_NaOH + k_Na_R * f_1^2 * c_Na * c_OH;
% Feed mass balance
f(8,:) = c_Na + c_NaOH - F_Na;
f(9,:) = c_C0 + c_C1 + c_C2 - F_IA ;
So what I basicly want to implement is that:
% Feed mass balance
f(8,:) = c_Na + c_NaOH - F_Na;
f(9,:) = c_C0 + c_C1 + c_C2 - F_IA ;
is true for for each time or in other words - that the sum of the components c_C0, c_C1 and c_C2 is always F_IA (constant). Same for c_NA and c_NaOH.
How could I implement this logic in matlab?
For the sake of clarity I did not show the code where I wrote down the constants, K, k, f and so on.
Thanks!
3 Kommentare
darova
am 9 Nov. 2019
I think you are overcompicating the problem
%% Startvector
% ...
c_C1 = F_FIA - c_C2 - c_C0;
c_NaOH = F_Na - c_Na;
%% DAE
Antworten (0)
Siehe auch
Kategorien
Mehr zu Online Estimation finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!