Compare results of different step size using Euler's method
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
x1=zeros(10000,1);
x2=zeros(10000,1);
x3=zeros(10000,1);
Time=zeros(10000,1);
for i=1:10001
    t=(i-1)*0.0005;
    Time(i)=t;
    if t==0
        x1(i)=0;
        x2(i)=0;
        x3(i)=2;
    else
        x1(i)=x1(i-1)+x2(i-1)*0.0005;
        x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
        x2(i)=x2(i-1)+x3(i-1)*0.0005;
end
Xa=x1*180/pi;
plot(Time,Xa,'red')
I can get the plot for one time interval but I want to get it for different time intervals such as at 0.001, 0.01,0.1 and also compare the results on the same plot. how do i do this? please help??
0 Kommentare
Akzeptierte Antwort
  ME
      
 am 30 Okt. 2019
        I have made a few tweaks to your code and it will now allow you to alter one parameter value (the time step size) and produce a new approximation that will be added to your previous plot.
clear all
h = 0.00001;
x1=zeros(round(5/h),1);
x2=zeros(round(5/h),1);
x3=zeros(round(5/h),1);
Time=zeros(round(5/h),1);
for i=1:(5/h)+1
    t=(i-1)*h;
    Time(i)=t;
    if t==0
        x1(i)=0;
        x2(i)=0;
        x3(i)=2;
    else
        x1(i)=x1(i-1)+x2(i-1)*h;
        x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
        x2(i)=x2(i-1)+x3(i-1)*h;
    end
end
Xa=x1*180/pi;
hold on
plot(Time,Xa)
Here h is your time step and I have just modified everything else to produce the correct length arrays for storing the results. I also took out the 'red' from your plotting command so that each approximation will automatically plot in a different colour.
2 Kommentare
  ME
      
 am 30 Okt. 2019
				
      Bearbeitet: ME
      
 am 30 Okt. 2019
  
			I guess you'd have to adjust this to something like:
h = sort([0.00001 0.005 0.01],'descend');
for step = 1:numel(h)
    x1=zeros(round(5/h(step)),1);
    x2=zeros(round(5/h(step)),1);
    x3=zeros(round(5/h(step)),1);
    Time=zeros(round(5/h(step)),1);
    for i=1:(5/h(step))+1
        t=(i-1)*h(step);
        Time(i)=t;
        if t==0
            x1(i)=0;
            x2(i)=0;
            x3(i)=2;
        else
            x1(i)=x1(i-1)+x2(i-1)*h(step);
            x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
            x2(i)=x2(i-1)+x3(i-1)*h(step);
        end
    end
    Xa=x1*180/pi;
    hold on
    plot(Time,Xa)
end
Here the sort is to make sure that you start with the largest step size, otherwise you'll run into issues when you come to plotting.
Siehe auch
Kategorien
				Mehr zu Performance and Memory finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


