How to compute the partial derivative
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kumar Thapa
am 22 Okt. 2019
Kommentiert: Kumar Thapa
am 22 Okt. 2019
Compute the partial derivative of the following loss function with respect to θj:
J(θ0, θ1, θ2) = -1/m sum_{i = 1}^m [y(i) * log(hθ(x(i))) + (1 - y(i)) log(1 - hθ(x(i)))],
where hθ(x) = 1/(1 + exp(-(θ0 + θ1 x1 + θ2 x2)).
2 Kommentare
Akzeptierte Antwort
Jon
am 22 Okt. 2019
As @Kalyan suggested you could use the symbolic toolbox if you have it. Otherwise you could just go to the definition of a partial derivative. Evaluate your function to quantify how much it changes when you make small perturbations to the variable you are taking the derivative with respect to. Then the partial derivative is the small change in the function divided by the small change to the input variable. You have to be careful though on the size of the perturbation, too small and the round off causes problems, too big and it isn't a very good approximation. Maybe plot your estimate of your derivative versus perturbation size to get an idea of the behavior. Hopefully has a relatively stable plateau between too small and too big.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!