hyperparameter tuning Neural network
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to tune below parameters in neural network?
training_function = {'traingd' 'traingda' 'traingdm' 'traingdx'}
optimizers= {'SGD', 'RMSprop', 'Adam'}
activation_functions= {'ReLU','Dropout'};
Transfer_functions= {'tansig,'tanh'};
I am trying byesian optimization 'bayesopt()' using ''optimizableVariable''. But it didnt work for me. How to define above parameters for "Vars" variable?
% Define a train/validation split to use inside the objective function
cv = cvpartition(numel(YTrain), 'Holdout', 1/3);
% Define hyperparameters to optimize
vars = [optimizableVariable('hiddenLayerSize', [1,20], 'Type', 'integer');
optimizableVariable('lr', [1e-3 1], 'Transform', 'log')];
% Optimize
minfn = @(T)kfoldLoss(XTrain', YTrain', cv, T.hiddenLayerSize, T.lr);
results = bayesopt(minfn, vars,'IsObjectiveDeterministic', false,...
'AcquisitionFunctionName', 'expected-improvement-plus');
T = bestPoint(results)
0 Kommentare
Antworten (1)
Sai Bhargav Avula
am 23 Okt. 2019
Hi,
You cannot directly optimize for the parameters you mentioned using Bayesian optimization.
A possible work around would be defining a custom optimizing function that the given parameters as input and solving them sequentially.
For example
function rmse = optimizerLoss(x,y,cv,numHid,optimizer,lr)
% Train net.
net = feedforwardnet(numHid, optimizer);
net.trainParam.lr = lr;
net = train(net, x(:,cv.training), y(:,cv.training));
% Evaluate on validation set and compute rmse
ypred = net(x(:, cv.test));
rmse = sqrt(mean((ypred - y(cv.test)).^2));
end
Use the optimizers the optimizers you mentioned sequentially. And finally DropOut is not a activation.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!