Error in matlab included deep learning example

5 Ansichten (letzte 30 Tage)
Javier Bush
Javier Bush am 15 Okt. 2019
Bearbeitet: Walter Roberson am 30 Dez. 2019
I am trying to run the matlab example
openExample('nnet/SeqToSeqClassificationUsing1DConvAndModelFunctionExample')
In 2019b but, when i change to train the network on gpu the example show me this error. Please help me to run it or give me a workaround to train using gpu.
Error using gpuArray/subsasgn
Attempt to grow array along ambiguous dimension.
Error in deep.internal.recording.operations.ParenAssignOp/forward (line 45)
x(op.Index{:}) = rhs;
Error in deep.internal.recording.RecordingArray/parenAssign (line 29)
x = recordBinary(x,rhs,op);
Error in dlarray/parenAssign (line 39)
objdata(varargin{:}) = rhsdata;
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>maskedCrossEntropyLoss (line 484)
loss(i) = crossentropy(dlY(:,i,idx),dlT(:,i,idx),'DataFormat','CBT');
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>modelGradients (line 469)
loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps);
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample (line 284)
[gradients, loss] = dlfeval(@modelGradients,dlX,Y,parameters,hyperparameters,numTimeSteps);
Thanks!
  1 Kommentar
Edric Ellis
Edric Ellis am 15 Okt. 2019
Thanks for reporting this - I can reproduce the problem using R2019b here, I shall forward this to the development team...

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Joss Knight
Joss Knight am 15 Okt. 2019
There is a bug in this Example which will be rectified. Thanks for reporting. To workaround, initialize the loss variable in the maskedCrossEntropyLoss function:
function loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps)
numObservations = size(dlY,2);
loss = zeros([1,1],'like',dlY); % Add this line
for i = 1:numObservations
idx = 1:numTimeSteps(i);
loss(i) = crossentropy(dlY(:,i,idx),dlT(:,i,idx),'DataFormat','CBT');
end
end
  6 Kommentare
Javier Bush
Javier Bush am 26 Okt. 2019
Thanks, I can change miniBatchSize now.
Zekun
Zekun am 29 Dez. 2019
Bearbeitet: Walter Roberson am 30 Dez. 2019
I found another solution for
"Error using gpuArray/subsasgn
Attempt to grow array along ambiguous dimension."
In dlarray/parenAssign.m, at this location:"\R2019b\toolbox\nnet\deep\@dlarray\parenAssign.m"
Line 15:
obj = zeros(0, 0, 'like', rhs);
Replace line 15 with the following 2 lines:
szrhs = size(rhs);
obj = zeros(szrhs(1), szrhs(2), 'like', rhs);
Users cannot directly edit this file, so I backed it up and replace it with a new file.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Javier Bush
Javier Bush am 16 Okt. 2019
Thanks it worked!

Linda Koletsou Soulti
Linda Koletsou Soulti am 22 Okt. 2019
Thank you for reporting the issue. The error you are getting is related to an attempt to grow a gpuArray using linear indexing assignment.
For more information please refer to the following bug report:
  1 Kommentar
Javier Bush
Javier Bush am 23 Okt. 2019
Linda,
I just changed the miniBatchSize to 2, in the same example and I get the following error, could you please help me with that? I think this is a bug because that is offered as a parameter in the example but you cannot change it.
Index exceeds the number of array elements (1).
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>maskedCrossEntropyLoss (line 486)
idx = 1:numTimeSteps(i);
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample>modelGradients (line 472)
loss = maskedCrossEntropyLoss(dlY, dlT, numTimeSteps);
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in SeqToSeqClassificationUsing1DConvAndModelFunctionExample (line 287)
[gradients, loss] = dlfeval(@modelGradients,dlX,Y,parameters,hyperparameters,numTimeSteps);

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by