Solving a system of equations without "syms"
108 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Daniel Miller
am 11 Okt. 2019
Beantwortet: GAGANDEEP KAUR
am 2 Nov. 2020
Hello!
I have been given the following system of equations that I should solve:
2x1 + 4x2 + 7x3 = 64
3x1 + x2 + 8x3 = 71
-2x = -4
Now, the problem is that I'm on the MatLab Grader platform and it doesn't seem to have this Symbolic Math Tool (i.e. "syms") in it. It only returns the error "Undefined function 'syms' for input arguments of type 'char'."
My code looks like this:
syms x1 x2 x3
equation1 = 2*x1 + 4*x2 + 7*x3 == 64;
equation2 = 2*x1 + 1*x2 + 8*x3 == 71;
equation3 = -2*x1 == -4;
solutionX = solve([equation1, equation2, equation3], [x1, x2, x3]);
SolutionX1 = solution.x1
SolutionX2 = solution.x2
SolutionX3 = solution.x3
Is there any other method I could use instead of using "syms"?
Thank you in advance!
0 Kommentare
Akzeptierte Antwort
jeewan atwal
am 11 Okt. 2019
A*x = b;
for your case
A = [2 4 7; 2 1 8; -2 0 0];
b = [64;71;-4];
where x = [x1;x2;x3]
solution x can be found using either of two methods as follows:
x = inv(A)*b;
or
x = linsolve(A,b)
4 Kommentare
jeewan atwal
am 11 Okt. 2019
If you have any doubt, you are free to ask. Happy to help.
Thankyou Steven Lord for the info.
Weitere Antworten (2)
GAGANDEEP KAUR
am 2 Nov. 2020
I also need to determine some variables using syms with solve command but find some issue with syms itself.
Code is like this:
for i=1:9
syms a b c d e ;
%calculating mole fractions of ionic species
x1=[0.5096 0.5092 0.5087 0.4852 0.4847 0.4834 0.4804 0.4805 0.4803];
x2=[0.0963 0.0964 0.0965 0.1163 0.1161 0.1158 0.1275 0.1266 0.1253];
x3=[0.3941 0.3944 0.3948 0.3985 0.3992 0.4008 0.3921 0.3929 0.3943];
T=[394.15 399.15 404.15 375.15 390.15 405.15 374.15 392.15 406.15];
%Equilibrium constant for reaction 1 (Solvation reaction)
K1=exp((-8.549)+(6692/T(i)));
%Equilibrium constant for reaction 2(Ionization of water)
K2=10^(-14);
%Equilibrium constant for reaction 3(Dissociation of HI)
K3=exp((16.93565)+((1250)/T(i))+(-2.575*log(T(i))));
%Equilibrium constant for reaction 4(Polyiodide formation a)
K4=exp((-936.28)+((40216.27)/T(i))+(151.983*(log(T(i))))+(-0.1675*(T(i))));
%Equilibrium constant for reaction 5(Polyiodide formation b)
K5=exp((1044.78)+(-45171.42/T(i))+(-165.20*log(T(i)))+(0.1511*(T(i))));
eqns=[((d*(c-e))/((x1(i)-a-b-c-d)^5)*(x2(i)-d-b-c))==K1,((a+b+c)*a)/((x1(i)-a-b-c-d)^2)==K2,(((a+b+c)*(d+b))/((x1(i)-a-b-c-d)*(x2(i)-d-b-c-e)))==K3,(((a+b+c)*(c-e))/((x1(i)-a-b-c-d)^4*(x2(i)-d-b-c-e)))==K4,(((e)*(x1(i)-a-b-c-d)^3)/((c-e)*(x3(i)-e)))==K5];
S=solve(eqns,a, b, c, d, e)
S.a(S.a<0)=[];
S.b(S.b<0)=[];
S.c(S.c<0)=[];
S.d(S.d<0)=[];
S.e(S.e<0)=[];
S.a=double(S.a);
S.b=double(S.b);
S.c=double(S.c);
S.d=double(S.d);
S.e=double(S.e);
end
A positive response is awaited
0 Kommentare
Communitys
Weitere Antworten in Distance Learning Community
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!