벡터v가 나머지 벡터들의 일차결합인가를 결정하라.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
taewoong yeom
am 6 Okt. 2019
Beantwortet: Nishant Gupta
am 11 Okt. 2019
벡터v가 나머지 벡터들의 일차결합인가를 결정하라는데 어떻게하는지 모르겠어요.
v=[3.2; 2.0; -2.6]
u1=[1.0; 0.4; 4.8]
u2=[3.4; 1.4; -6.4]
u3=[-1.2; 0.2; -1.0]
0 Kommentare
Akzeptierte Antwort
Nishant Gupta
am 11 Okt. 2019
First, make a matrix whose each row contains the transpose of each of the given vector like:
A = [ v'; u1'; u2'; u3' ]
Then reduce matrix A to echlon form using rref function :
E = rref(A);
whose detailed information is there in the following link:
Then the vectors v, u1,u2 and u3 are linearly dependent if and only if E has a row of zeroes. You can refer to the following document for Linear Dependence Test of vectors:
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!