Finite Difference implicit solver (Crank-Nicolson) compare with analytical solution
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
why my results from analytical and imilicit method doesn't match?
clc
close all
clf
L = 100;
delt = 10;
delx = 10;
D = 10;
n = (L/delx)+1;
lamda = (D*delt)/delx^2;
k = (0:delt:500);
T= zeros(length(k),n);
% Initial & Boundary Condition
T(:,1) = 16;
T(:,n) = 11;
T(1,2:n-1) = 16;
% Finite Difference implicit solver (Crank-Nicolson)
% Setup tri-diagonal matrix entries for the internal nodes
a = zeros(1,n);
b = zeros(1,n);
c = zeros(1,n);
d = zeros(1,n);
a(1)= 0; b(1)= 1; c(1)= 0; d(1)= 16;
a(n)= 0; b(n)= 1; c(n)= 0; d(n)= 11;
for q = 2:1:n-1
a(q)= -(lamda);
b(q)= 2*(1+ lamda);
c(q)= -(lamda);
d(q)= (2*T(1,q)) + (2*((T(1,q-1)- 2*T(1,q)+ T(1,q+1))/delx^2)*delt);
end
for i = 2: length (k)
T(i,:)= Tridiag (a,b,c,d); % Call tri-diagonal function
for q = 2:1:n-1
d(q)= (2*T(i,q)) + (2*((T(i,q-1)- 2*T(i,q)+ T(i,q+1))/delx^2)*delt);% this allow to move to next time step
end
end
% Analytical Solution
T1 = 16;
T2 = 11;
D = 10;
t=[10 20 40 80 160 250 500];
x=[0:10:100];
T_ana= zeros(length(x),length(t));
for i= 1:length(x)
for j = 1 : length (t)
constant = 0;
for q = 1:50
term1 = ((T2 - T1)*cos(q * pi))/q;
term2 = sin((q*pi*x(i))/L);
term3 = exp(-(D*(q)^2*(pi)^2*t(j))/(L)^2);
constant = constant + (term1*term2*term3);
end
tfinal = T1+((T2 - T1)*x(i))/L+((2/pi)*(constant));
T_ana(i,j)= tfinal;
end
end
Antworten (1)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!