f=@(t,y) 4*exp(0.8*t)-0.5*y; tspan = [0 4]; y0 = 2; h = 1; [t,y] = ode_euler(f,tspan,y0,h)
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
reda kriker
am 5 Okt. 2019
Beantwortet: Pavel Osipov
am 5 Okt. 2019
f=@(t,y) 4*exp(0.8*t)-0.5*y;
tspan = [0 4];
y0 = 2;
h = 1;
[t,y] = ode_euler(f,tspan,y0,h)
why this code is not working
1 Kommentar
Akzeptierte Antwort
Pavel Osipov
am 5 Okt. 2019
tspan = [0 4];
y0 = 2;
[t1,y1] = ode45(@(t,y) 4*exp(0.8*t)-0.5*y,tspan,y0,h);
figure('name','Reda','color','w');
plot(t1,y1, 'r-','LineWidth',2);grid on;
xlabel('Time');ylabel('Solution y(Time)');
title('And you instead of a blanket substitute solver Euler');
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/241259/image.png)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!