How to find eigenvalues for a system of lenearized ordinary differential equations?
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Tanya Sharma
am 5 Okt. 2019
Kommentiert: Poly
am 10 Mär. 2022
I have a system of linearized ODEs with corresponding boundary conditions.
%----------------------------system of ODEs--------------------------------------%
y'(1)=y(2)
y'(2)=y(3)
y'(3)=(phi./Da).*y(2)+(2.*phi.*Fr./A1).*fd.*y(2)-(fd1.*1./A1).*y(3)-(fdd.*1./A1).*y(1)+(2.*fd.*1./A1).*y(2)-(e./A1).*y(2)-(phi.*Ra./(A1^2).*A2).*y(4)
y'(4)=y(5)
y'(5)=-(Pr./A2).*(fd.*y(5)+thd.*y(1)+e.*y(4))];
%---------------------------boundary conditions----------------------------------%
y(1)=y(2)=y(4)=0 at eta=0
y(2)=y(4)=0 at eta=0;
here Pr phi Ra Da Fr A1 A2 fd1 fd fdd thd are known quantities and 'e' is unknown.
I need to solve the system to find out the eigenvalues (e).
Thanks in advance.
0 Kommentare
Akzeptierte Antwort
Pavel Osipov
am 5 Okt. 2019
Tanya, hi.
write so:
dyi/dt =...y1 (t)+...y2 (t)+...+y5(t);
let x (t)=[y1;y2;...;y5]; ->
((V/ve) x=Ah; A - matrix coeff. Your system. Let's formally denote d/dt=p
px-Ax=0; - > (p*E-A) x=0; since x is not 0, then
det(p*E-A)=0. This is the equation for the eigenvalues of p.
2 Kommentare
Poly
am 10 Mär. 2022
Hello Tanya!! I don't know whether you get the code right or not? but can you share the code if possible
Weitere Antworten (2)
Pavel Osipov
am 9 Okt. 2019
Hi!
det(p*E-A)=0. This is the equation for the eigenvalues of p. - -> The unkown "p" is solution det(p*E-A)=0. det - is the determinant with dimensions 5x5.
px-Ax=0 ->Ax=px, p is eigenvalues of A MATLAB command [V,D] = eig(A) returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D. (from MATLAB help).
eigenvalues p is 5x1 vector = liagonal elements D. eigenvectors of A see at columns V.
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!