How does this Euler's Method for first ODE work?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
1 - function [x,y] = Euler(h, x0, y0, interval_length, func)
2 - nsteps = floor(interval_length/h) + 1;
3 - x = zeros(nsteps,1);
4 - y = zeros(nsteps,1);
5- x(1) = x0;
6- y(1) = y0;
7 - for i=2:nsteps
8 - y(i) = y(i-1) + h* func(x(i-1), y(i-1));
9 - x(i) = x(i-1) + h;
10 - end
Please explain how this program works line by line I am trying to understand it so I can learn how to use it properly.
0 Kommentare
Antworten (1)
darova
am 3 Okt. 2019
Here are some basic concepts
1 - function [x,y] = Euler(h, x0, y0, interval_length, func)
% h - step in X direction (dx)
% x0 - initial position (start value)
% y0 - initial position (start value)
% interval_length - how far object will move from x0
% func - derivate function of y (dy/dx == y' == f(x,y))
2 - nsteps = floor(interval_length/h) + 1; % number of points (steps)
3 - x = zeros(nsteps,1); % preallocation (memory reserving for array)
4 - y = zeros(nsteps,1); % preallocation (memory reserving for array)
5- x(1) = x0; % initialization of array
6- y(1) = y0; % initialization of array
7 - for i=2:nsteps % for loop. Everything between FOR .. LOOP is repeated
8 - y(i) = y(i-1) + h* func(x(i-1), y(i-1)); % increase Y position
9 - x(i) = x(i-1) + h; % increase X position
10 - end
Google more about Euler Method
0 Kommentare
Siehe auch
Kategorien
Mehr zu Startup and Shutdown finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!