solving 4th order ode
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Roi Bar-On
am 1 Okt. 2019
Kommentiert: Elayarani M
am 23 Sep. 2020
Hello everyone! I would appreciate your help in this section.
I have this 4th order,non-linear ,homogeneous ode that I would like to solve:
(2B+1+y)y''-k(1+y)y''''=0 with: y(0)=y(L)=0;y'(0)=y'(L)=1; where B,k and L are constants.
This is my matlab code so far:
L=1;B=0.25;k=0.1;
dydt = zeros(4,1);
dydt(1)=y(2);
dydt(2)=y(3);
dydt(3)=y(4);
dydt(4)=((2.*B+1+y(1)).*y(3))./(k.*(1+y(1)));
y1(1)=0; y1(end)=0; y2(1)=1; y2(end)=1;yint=[y1(1);y1(end);y2(1);y2(end)];
tspan = [0 1];
[t,y] = ode45(@(t,y) dydt, tspan, yint);
plot(t,y,'-o')
I think that something is not right. I have almost no expericance with solving ode's with MATLAB, especially with this high order so basically I gathered pieces of codes from things I saw online with the hope that it will assemble to a reasonable solution. I'm not sure I'm in a good path at all. I would be grateful for some guidance. Roi
0 Kommentare
Akzeptierte Antwort
darova
am 1 Okt. 2019
Use bvp4c()
You already have written your equation as system of first-order equations
function dydt = ode4(t,y)
L=1;B=0.25;k=0.1;
dydt = zeros(4,1);
dydt(1)=y(2);
dydt(2)=y(3);
dydt(3)=y(4);
dydt(4)=(2.*B+1+y(1)).*y(3))./(k.*(1+y(1));
end
Here is function for your boundary conditions
function res = bc4(y0, y1)
res = [y0(1)-0 % y(0) = 0
y0(2)-1 % y'(0) = 1
y1(1)-0 % y(end) = 0
y1(2)-1]; % y'(end) = 1
end
See bvp4c
21 Kommentare
darova
am 19 Nov. 2019
I tried this
x=0.5;
x1=fsolve(@solver,x);
And set limits for y axis:
ylim([0 2])
THe result (y'(0)=y'(1)=0.):

Weitere Antworten (1)
Roi Bar-On
am 7 Nov. 2019
1 Kommentar
Elayarani M
am 23 Sep. 2020
Hi. I want to solve the following equation using ode45 solver.
How to set the initial conditions?
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

