Deep learning with vector output

3 Ansichten (letzte 30 Tage)
Samuli Siltanen
Samuli Siltanen am 26 Aug. 2019
Kommentiert: Samuli Siltanen am 30 Aug. 2019
I need to learn a mapping from 28x28 images into a vector of 45 floating-point numbers. This is not really classification as the numbers range between -1 and 1.
When designing a deep neural network, what output layer could I use?
Best,
Samuli Siltanen

Antworten (1)

Asvin Kumar
Asvin Kumar am 29 Aug. 2019
You can use the tanhLayer to obtain output values in the range of –1 to 1.
  3 Kommentare
Asvin Kumar
Asvin Kumar am 30 Aug. 2019
For the output layer, you can use a regressionLayer after the tanhLayer. This will produce predictions in the required range and compute the half-mean-squared-error loss.
Samuli Siltanen
Samuli Siltanen am 30 Aug. 2019
Thank you so much! I will try this. Samu

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by