[HELP] A Classical Numerical Computing Question
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
f(x) = (exp(x)-1)/x; g(x) = (exp(x)-1)/log(exp(x))
Analytically, f(x) = g(x).
When x is approaching to 0, both f(x) and g(x) are approaching to 1. However, g(x) works better than f(x).
% Compute y against x
for k = 1:15
x(k) = 10^(-k);
f(k) =(exp(x(k))-1)/x(k);
De(k) = log(exp(x(k)));
g(k)= (exp(x(k))-1)/De(k);
end
% Plot y
plot(1:15,f,'r',1:15,g,'b');
f(x) actually diverges when x approaches to 0.But shouldn't them be the same??
0 Kommentare
Akzeptierte Antwort
Matt Fig
am 8 Sep. 2012
Bearbeitet: Matt Fig
am 8 Sep. 2012
No, they shouldn't be the same at the fringes. This is an example of why we often have to look for more stable ways of doing in floating point arithmetic what is analytically simple. Look how f oscillates:
f = @(x) (exp(x)-1)./x;
g = @(x) (exp(x)-1)./log(exp(x));
x = 0:1e-13:1e-7; % Try with x = 0:2e-14:1e-7;
ax(1) = subplot(1,2,1);
plot(x,f(x),'r')
title('(exp(x)-1)./x')
ax(2) = subplot(1,2,2);
plot(x,g(x),'b');
title('(exp(x)-1)./log(exp(x))')
L = get(gca,{'xlim','ylim'});
axis(ax(1),[L{:}])
3 Kommentare
Matt Fig
am 8 Sep. 2012
I think what we have is a case of near perfect cancellation of errors. Take a look:
x = 1e-12:1e-12:1e-9; % Double values
X = vpa(1/10^12:1/10^12:1/10^9,80); % Symbolic values
syms Z
D = abs(X - log(exp(x)));
E = abs(X-x);
plot(D)
figure
plot(E) % Very little difference
F = abs((exp(x)-1) - subs(exp(Z)-1,X));
figure
plot(F) % Notice similarity to D!
G = F-D;
max(double(G)) % Cancellation of errors.
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!