why this error is heppening?

3 Ansichten (letzte 30 Tage)
Hafiz Wasim Arif
Hafiz Wasim Arif am 1 Aug. 2019
Kommentiert: Walter Roberson am 6 Aug. 2019
my CNN code to train brats images with nifti extension
brainDatasetPath=fullfile('D:','MSCS SUPERIOR','Image Processing','source_code');
imds = imageDatastore(brainDatasetPath, ...
'FileExtensions','.mat','ReadFcn',@(x) matRead(x));
b=load(imds.Files{1});
c=b.Images;
cellArray=cellmat(1,155,240,240,0);
for k=1:155
cellArray{k}=c(:,:,k); % storing each slice in cell array
end
%[trainDigitData,valDigitData] = splitEachLabel(cellArray,75,'randomize');
trainDigitData = cellArray(1:100);
valDigitData = cellArray(101:155);
%% Define Network Architecture
% Define the convolutional neural network architecture.
layers = [
imageInputLayer([240 240 1])
convolution2dLayer(3,16,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding',1)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
%% specify training options
options = trainingOptions('sgdm',...
'MaxEpochs',3, ...
'ValidationData',cellArray(101:155),...
'ValidationFrequency',30,...
'Verbose',false,...
'Plots','training-progress');
error
Error using trainingOptions (line 187)
The value of 'ValidationData' is invalid. Cell array with validation data must have two
elements: the input data X and a numeric array of responses Y.
Error in test (line 43)
options = trainingOptions('sgdm',...
  8 Kommentare
Hafiz Wasim Arif
Hafiz Wasim Arif am 5 Aug. 2019
yes it is true they did not label the data but for each patient data they provided ground truth data. for example a patient's 155 slices of origional data and for those they provided 155 slices of ground truth values of MRI.
Walter Roberson
Walter Roberson am 6 Aug. 2019
If all of this were working properly, then would would the desired outcome be? That you feed in images and it would tell you whether somewhere in the image there was a Grade II pteroblastoma ? Or that in each case you would get out a fully labeled image? If I understand your code correctly (and I probably do not), your code is set up to consider an entire image and classify the image as a whole into one of several different classes.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Neuroimaging finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by