how to find complex polynomial solution
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I want to find roots of CDP, T's are constant real values
CDP1 =T_6*(1i*w).^6 +T_5*(1i*w).^5 +T_4*(1i*w).^4 +T_3*(1i*w).^3 +T_2*(1i*w).^2 +T_1*(1i*w) +T_0;
CDP2 =Tp_4*(1i*w)^.4 +Tp_3*(1i*w).^3 +Tp_2*(1i*w).^2 +Tp_1*(1i*w) +Tp_0;
CDP= CDP1*(1i*w).^1.4 +CDP2;
2 Kommentare
Antworten (1)
Alex Mcaulley
am 30 Jul. 2019
Then, after defining all the constant values:
syms w
CDP1 = T_6*(1i*w).^6 + T_5*(1i*w).^5 + T_4*(1i*w).^4 + T_3*(1i*w).^3 + T_2*(1i*w).^2 + T_1*(1i*w) + T_0;
CDP2 = Tp_4*(1i*w)^.4 + Tp_3*(1i*w).^3 + Tp_2*(1i*w).^2 + Tp_1*(1i*w) + Tp_0;
CDP = CDP1*(1i*w).^1.4 + CDP2;
sol = double(solve(CDP))
8 Kommentare
Walter Roberson
am 30 Jul. 2019
w^10 is okay. You then multiply by i and raise the result to 0.9 or 4.9. By the power law, (A*B)^C is A^C*B^C so (i*w^10)^0.9 is i^0.9 * (w^10)^0.9 and that second part is not polynomial
In the case where w is nonnegative real if you are willing to treat 0.9 as 9/10 exactly (which it is not) then you could multiply out to get w^9. But if that is what you want then you need to code it: with the 1i in there, matlab would never compute it that way. You would be getting a different branch of 0.9 power.
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!