lsqcurvefit not adjusting some parameters as expected
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Leor Greenberger
am 26 Jul. 2019
Beantwortet: Alex Sha
am 22 Feb. 2020
I am trying to fit some data to a 3 parameter curve expressed as .
What I am finding when using lsqcurvefit is that it converges on what appears to be good values for and but not for c. In fact, c remains unchanged from the guessed value, regardless of its initial value.
First I try with c = p(3) = 1000
x = 0:2047;
y = load('y.mat'); % see attachment
fun = @(p,x)abs(p(1)*(x-p(3))+p(2)*(x-p(3)).^3);
options = optimoptions(@lsqcurvefit,'StepTolerance',1e-10, 'Display', 'iter-detailed', 'FunctionTolerance', 1E-12);
pGuess = [2.5E-5 2.6E-12 1000];
[p,fminres] = lsqcurvefit(fun,pGuess,x,y, [], [], options)
Norm of First-order
Iteration Func-count f(x) step optimality
0 4 0.00635297 1.03e+08
1 8 0.00632173 3.02663e-13 99.9
2 12 0.00623569 9.85058e-05 1.13e+04
3 16 0.00623569 3.31307e-17 0.0114
Optimization stopped because the relative sum of squares (r) is changing
by less than options.FunctionTolerance = 1.000000e-12.
p =
2.58614068198555e-05 1.75916049599052e-12 1000.00009850203
fminres =
0.00623568562340633
Now I try with c = p(3) = 1400:
pGuess = [2.5E-5 2.6E-12 1400];
[p,fminres] = lsqcurvefit(fun,pGuess,x,y, [], [], options)
Norm of First-order
Iteration Func-count f(x) step optimality
0 4 0.168905 9.79e+09
1 8 0.10571 6.45539e-12 1.16e+06
2 12 0.105681 9.10932e-06 1.43e+08
3 16 0.105681 0.000231759 1.43e+08
4 20 0.105681 5.79397e-05 1.43e+08
5 24 0.105681 1.44849e-05 1.43e+08
6 28 0.105681 3.62123e-06 1.43e+08
7 32 0.105681 9.05308e-07 1.43e+08
8 36 0.105681 2.26327e-07 1.43e+08
9 40 0.105681 5.65817e-08 1.43e+08
10 44 0.105681 1.41454e-08 1.43e+08
11 48 0.105681 3.53636e-09 1.43e+08
12 52 0.105681 8.8409e-10 1.43e+08
13 56 0.105681 2.21022e-10 1.43e+08
14 60 0.105681 5.52556e-11 1.43e+08
Optimization stopped because the norm of the current step, 5.525560e-11,
is less than options.StepTolerance = 1.000000e-10.
p =
2.4936115641411e-05 -3.9025705054523e-12 1399.9999908909
fminres =
0.105680830464589
From the data set it is clear that the min occurs at x = 1066.
>> [m,k] = min(y)
m =
0.000292016392169768
k =
1067
>> x(k)
ans =
1066
3 Kommentare
Walter Roberson
am 27 Jul. 2019
Your function would benefit from a constraint.
fun = @(p,x)abs(p(1)*(x-p(3))+p(2)*(x-p(3)).^3);
if you feed in -p(1) and -p(2) then you the result will have the same abs() as original p(1) and p(2) . Therefore you can constrain one of the values, such as p(1) to be >= 0, which will reduce searching.
Akzeptierte Antwort
Matt J
am 27 Jul. 2019
It helps to pre-normalize your x,y data and to use polyfit to generate a smart initial guess,
%data pre-normalization
y=y.'/max(y);
[~,imin]=min(y);
x=(x-x(imin))/max(x);
%generate initial guess
p0=polyfit(x(imin:end),y(imin:end),3);
pGuess = [p0(1),p0(3), 0];
fun = @(p,x)abs(p(1)*(x-p(3))+p(2)*(x-p(3)).^3);
options = optimoptions(@lsqcurvefit,'StepTolerance',1e-10, 'Display', 'iter-detailed', 'FunctionTolerance', 1E-12);
[p,fminres,~,ef] = lsqcurvefit(fun,pGuess,x,y, [], [], options)
plot(x,y,'o-',x(1:20:end),fun(p,x(1:20:end)),'x--y'); shg
3 Kommentare
Matt J
am 27 Jul. 2019
You're welcome, but please Accept-click the answer if you are satisfied that the fitting code is now working.
Weitere Antworten (1)
Alex Sha
am 22 Feb. 2020
The best solution seems to be:
Root of Mean Square Error (RMSE): 8.58712889537096E-5
Sum of Squared Residual: 1.50943288116718E-5
Correlation Coef. (R): 0.999947601349384
R-Square: 0.999895205444387
Adjusted R-Square: 0.999895102905683
Determination Coef. (DC): 0.99989229572485
Chi-Square: 0.00435400203642259
F-Statistic: 9515701.1004098
Parameter Best Estimate
---------- -------------
p1 -2.54821313582336E-5
p2 -2.52958254532916E-12
p3 1062.58024839597
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with Optimization Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!