How to set a point which coordinates depends on two functions
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Basically I'm resolving a system of two differential equations with a R-K of order 4 and the point of equilibrium y0 from which the solutions begins isn't fixed. In fact y0 depends from two functions appearing in the system. So the point y0 stays on a curve defined from these 2 functions which I've mentioned before. What I'm asking for is if there's a way of plotting the solutions with y0 running on this curve.
My codes are:
function [t,y]=RK(fun,tspan,y0,n,A,b,c)
h=(tspan(2)-tspan(1))/n;
y(:,1)=y0;
t(1)=tspan(1);
s=length(b);
for j=1:n
k(:,1)=feval(fun,t(j),y(:,j));
for i=2:s
k(:,i)=feval(fun,t(j)+c(i)*h,y(:,j)+h*k(:,1:i-1)*A(i,1:i-1)');
end
y(:,j+1)=y(:,j)+h*k*b;
t(j+1)=t(j)+h;
end
end
the first one
function dy=pred_prey(t,y)
a=1/3;
d=2/3;
r=(2/3)*(1/(exp(-0.5*t)+1)-0.5)*(1+(sin(t)/t));
mu=13/20-(3/5)*exp(-(1/(2*t)));
dy(1)=y(1)*r-a*y(1)*y(2);
dy(2)=-mu*y(2)+d*y(1)*y(2);
dy=dy';
end
second one
function []=driver_pred_prey()
close all;
tspan=[1/100 50];
n=5000;
fun='pred_prey';
t=[0.01:0.01:50];
r=(2/3)*(1./(exp(-0.5*t)+1)-0.5).*(1+(sin(t)./t));
mu=13/20-(3/5)*exp(-(3./t));
y0=[0.83705 0.45454]';
A=[0 0 0 0; 1/2 0 0 0 ; 0 1/2 0 0; 0 0 1 0];
b=[1/6 1/3 1/3 1/6]';
c=[0 1/2 1/2 1]';
[t,y]=RK(fun, tspan, y0, n, A, b, c);
figure (1)
plot(t, y(1,:), 'k-'), hold
plot(t, y(2,:), 'k-.')
grid on
legend('resources','population')
figure (2)
plot(y(1,:),y(2,:))
title('orbits')
end
It runs obviously. I've got the y0 that you find here from plotting separatley the curve it stays on, and then getting its coordinates.
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Spline Postprocessing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!