Solver stopped prematurely. fmincon stopped because it exceeded the function evaluation limit, options.Ma​xFunctionE​valuations = 3.000000e+03. Unable to rectify this error. Please Help

21 Ansichten (letzte 30 Tage)
F_r and T_r are defined.
[m n ]=size(F_r);
[M N]=size(T_r);
My constraints are lengthy but i have checked it is correct.
My code:
aeq=[];
beq=[];
a=[];
b=[];
lb=zeros(1,42);
for j=1:n+N
if(j<=n)
ub(j)=F_r(1);
else
ub(j)=tmax;
end
end
x0=[F_r T_r];
options.Display = 'iter';
[x,fval]=fmincon(@(x)objective2(x,n),x0,a,b,aeq,beq,lb,ub,@(x)constraint2(x,n,UA_r,F_r,T_r),options);
My objective Function:
function f=objective2(x,n)
f=-x(n+10);
end
My contraints:
%% Constraint
function [c,ceq]=constraint2(x,n,UA_r,F_r,T_r)
ceq(1)=x(2)+x(6)-x(1);
ceq(2)=x(3)-x(2);
ceq(3)=x(15)-x(14);
ceq(4)=x(4)-x(3);
ceq(5)=x(12)-x(11);
ceq(6)=x(5)-x(4);
ceq(7)=x(14)-x(13);
ceq(8)=x(10)-x(5)-x(9);
ceq(9)=x(7)-x(6);
ceq(10)=x(17)-x(16);
ceq(11)=x(8)-x(7);
ceq(12)=x(19)-x(18);
ceq(13)=x(9)-x(8);
ceq(14)=x(21)-x(20);
ceq(15)=x(6)*[0.444*(x(n+7)-x(n+6))+(0.00101/2)*(x(n+7)^2-x(n+6)^2)]-[x(16)*[0.409*(x(n+16)-x(n+17))+(0.00096/2)*(x(n+16)^2-x(n+17)^2)]];
ceq(16)=x(6)*[0.444*(x(n+7)-x(n+6))+(0.00101/2)*(x(n+7)^2-x(n+6)^2)]-[UA_r(4)*[(x(n+16)-x(n+7))-(x(n+17)-x(n+6))]/log((x(n+16)-x(n+7))/(x(n+17)-x(n+6)))];
ceq(17)=x(7)*[0.444*(x(n+8)-x(n+7))+(0.00101/2)*(x(n+8)^2-x(n+7)^2)]-[x(18)*[0.429*(x(n+18)-x(n+19))+(0.00099/2)*(x(n+18)^2-x(n+19)^2)]];
ceq(18)=x(7)*[0.444*(x(n+8)-x(n+7))+(0.00101/2)*(x(n+8)^2-x(n+7)^2)]-[UA_r(5)*[(x(n+18)-x(n+8))-(x(n+19)-x(n+7))]/log((x(n+18)-x(n+8))/(x(n+19)-x(n+7)))];
ceq(19)=x(8)*[0.444*(x(n+9)-x(n+8))+(0.00101/2)*(x(n+9)^2-x(n+8)^2)]-[x(20)*[0.414*(x(n+20)-x(n+21))+(0.00096/2)*(x(n+20)^2-x(n+21)^2)]];
ceq(20)=x(8)*[0.444*(x(n+9)-x(n+8))+(0.00101/2)*(x(n+9)^2-x(n+8)^2)]-[UA_r(5)*[(x(n+20)-x(n+9))-(x(n+21)-x(n+8))]/log((x(n+20)-x(n+9))/(x(n+21)-x(n+8)))];
ceq(21)=x(2)*[0.444*(x(n+3)-x(n+2))+(0.000101/2)*(x(n+3)^2-x(n+2)^2)]-x(14)*[0.414*(x(n+14)-x(n+15))+(0.00096/2)*(x(n+14)^2-x(n+15)^2)];
ceq(22)=x(2)*[0.444*(x(n+3)-x(n+2))+(0.000101/2)*(x(n+3)^2-x(n+2)^2)]-UA_r(1)*[((x(n+14)-x(n+3))-(x(n+15)-x(n+2)))/log((x(n+14)-x(n+3))/(x(n+15)-x(n+2)))];
ceq(23)=x(3)*[0.444*(x(n+4)-x(n+3))+(0.00101/2)*(x(n+4)^2-x(n+3)^2)]-UA_r(2)*[((x(n+11)-x(n+4))-(x(n+12)-x(n+3)))/log((x(n+11)-x(n+4))/(x(n+12)-x(n+3)))];
ceq(24)=x(3)*[0.444*(x(n+4)-x(n+3))+(0.00101/2)*(x(n+4)^2-x(n+3)^2)]-x(11)*[0.446*(x(n+11)-x(n+12))+(0.00101/2)*(x(n+11)^2-x(n+12)^2)];
ceq(25)=x(4)*[0.444*(x(n+5)-x(n+4))+(0.00101/2)*(x(n+5)^2-x(n+4)^2)]-x(13)*[0.414*(x(n+13)-x(n+14))+(0.00096/2)*(x(n+13)^2-x(n+14)^2)];
ceq(26)=x(4)*[0.444*(x(n+5)-x(n+4))+(0.00101/2)*(x(n+5)^2-x(n+4)^2)]-UA_r(3)*[((x(n+13)-x(n+5))-(x(n+14)-x(n+4)))/log((x(n+13)-x(n+5))/(x(n+14)-x(n+4)))];
ceq(27)=x(n+2)-x(n+1);
ceq(28)=x(n+6)-x(n+1);
ceq(29)=x(5)*[0.444*x(n+5)+(0.00101/2)*x(n+5)^2]+x(9)*[0.444*x(n+9)+(0.00101/2)*x(n+9)^2]-x(10)*[0.444*x(n+10)+(0.00101/2)*x(n+10)^2];
c(1)=x(n+6)-x(n+7);
c(2)=x(n+17)-x(n+16);
c(3)=10-x(n+16)+x(n+7);
c(4)=10-x(n+17)+x(n+6);
c(5)=x(n+7)-x(n+8);
c(6)=x(n+19)-x(n+18);
c(7)=10-x(n+18)+x(n+8);
c(8)=10-x(n+19)+x(n+7);
c(9)=x(n+8)-x(n+9);
c(10)=x(n+21)-x(n+20);
c(11)=10-x(n+20)+x(n+9);
c(12)=10-x(n+21)+x(n+8);
c(13)=x(n+2)-x(n+3);
c(14)=x(n+15)-x(n+14);
c(15)=10-x(n+14)+x(n+3);
c(16)=10-x(n+15)+x(n+2);
c(17)=x(n+3)-x(n+4);
c(18)=x(n+12)-x(n+11);
c(19)=10-x(n+11)+x(n+4);
c(20)=10-x(n+12)+x(n+3);
c(21)=x(n+4)-x(n+5);
c(22)=x(n+14)-x(n+13);
c(23)=10-x(n+13)+x(n+5);
c(24)=10-x(n+14)+x(n+4);
if(x(n+10)>x(n+5))
c(25)=x(n+10)-x(n+9);
else
c(26)=x(n+10)-x(n+5);
end
ceq(27)=x(13)-F_r(13);
ceq(28)=x(11)-F_r(11);
ceq(28)=x(16)-F_r(16);
ceq(30)=x(18)-F_r(18);
ceq(31)=x(1)-F_r(1);
ceq(32)=x(20)-F_r(20);
ceq(33)=x(n+1)-T_r(1);
ceq(34)=x(n+2)-T_r(2);
ceq(35)=x(n+6)-T_r(6);
ceq(36)=x(n+11)-T_r(11);
ceq(37)=x(n+13)-T_r(13);
ceq(38)=x(n+16)-T_r(16);
ceq(39)=x(n+18)-T_r(18);
ceq(40)=x(n+20)-T_r(20);
  3 Kommentare
Bjorn Gustavsson
Bjorn Gustavsson am 12 Jul. 2019
Couldn't you reduce the number or components in x - at least the first 14 ceq seems to be simple linear equalities. That might help a bit.
...and for any given value of n you only look for the smallest value of component x(n+10), so this might be a problem of only looking at the subspace where your constraints are satisfied, maybe linprog has a better algorithm for this problem.
HTH

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Amna Mazen
Amna Mazen am 22 Sep. 2021
If you changed the Step tolerance to a smaller number. Return it back to its default number. I think that was "1e-10" and your problem may be solved.
  1 Kommentar
Walter Roberson
Walter Roberson am 23 Sep. 2021
The only option the user passed in was 'Display', 'iter', so the step tolerance was at the default value already. The user needed to increase Ma​xFunctionEvaluations

Melden Sie sich an, um zu kommentieren.

Tags

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by