Plotting Classification Loss Functions
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
How can I plot the logisitic loss function, MathWorks says that is supports loss functions that you can specify by using the 'LossFun' name-value pair argument. The value for this function is 'logit'. So is there a way that MatLab can automically generate this function for me?
0 Kommentare
Antworten (1)
Meet
am 1 Aug. 2024
Hi Johnny,
MATLAB provides a function "fitclinear" that you can use to fit a logistic regression model. You can also specify the loss function, in your case, "logit".
Here is an example code for the same, where I have generated 100 samples for each class and labeled the data as "+1" and "1" for the two classes:
The "Learner", "logistic" argument specifies that we are using a logistic regression model.
The "LossFun", "logit" argument specifies that we are using the logistic loss function.
numSamples = 100;
X = [randn(numSamples, 2) + 1; randn(numSamples, 2) - 1]; % Features
y = [ones(numSamples, 1); -ones(numSamples, 1)]; % Output Binary labels: +1 and -1
% Plot the synthetic data
figure;
gscatter(X(:,1), X(:,2), y, 'rb', 'xo');
xlabel('Feature 1');
ylabel('Feature 2');
title('Synthetic Data');
legend('Class +1', 'Class -1');
grid on;
% Fit a Model using Logistic Loss
mdl = fitclinear(X, y, 'Learner', 'logistic', 'LossFun', 'logit');
disp(mdl);
For more information, you can refer to the following documentation link:
0 Kommentare
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!