Find constraints on polynomial coefficients optimization
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
AdarG
am 11 Jul. 2019
Kommentiert: AdarG
am 13 Jul. 2019
I am trying to find the optimal coefficients of the polynomial of the form:
theta=a1*t^2 +a2*t+a3 (i.e., to find a1,a2,a3) for some cost function.
I'm using patternsearch and I need to formulate the nonlinear/linear constraints on a1,a2,a3.
The problem is that I have constraints on theta (say [lb,ub]) and the range of t (say [0,T]), but not on the coefficients themselves.
So far, I've managed to formulate these constraints:
lb<a3<ub;
lb<a1*T^2+a2*T+a3<ub;
I can't figure out the 3rd constraint on the extrimum on t=-a2/(2*a1). I care only if is in the rectancle [0,T],[lb,ub].
Any idea?
6 Kommentare
Akzeptierte Antwort
Bruno Luong
am 12 Jul. 2019
Bearbeitet: Bruno Luong
am 12 Jul. 2019
Why can't you implement
ts := max(min(-a2/(2*a1),T),0);
Then add the 6 constraints into your minimization pb:
two non-linear (and not differentiable):
lb <= theta(ts) <= ub
four non equality linear contstraints;
lb <= theta(0) <= ub
lb <= theta(T) <= ub
5 Kommentare
Weitere Antworten (2)
Matt J
am 11 Jul. 2019
Bearbeitet: Matt J
am 11 Jul. 2019
What's to figure out? You've already articulated that the (nonlinear) constraints on the extremum are,
0<=-a2/(2*a1)<=T
The only thing I might recommend is that converting them to linear constraints,
0<=-a2<=2*T*a1
a1>=0
might make things easier for patternsearch.
6 Kommentare
Matt J
am 11 Jul. 2019
Bearbeitet: Matt J
am 11 Jul. 2019
x = fseminf(fun,[a1,a2,a3], 2, @(a,s) seminfcon(a,s,T,lb,ub));
function [c,ceq,K_ub,K_lb,s]= seminfcon(a,s,T,lb,ub)
% No finite nonlinear inequality and equality constraints
c = [];
ceq = [];
% Sample set
if isnan(s(1))
% Initial sampling interval
s = [0.01 0; 0.01 0];
end
t1 = 0:s(1):T;
t2 = 0:s(2):T;
% Evaluate the semi-infinite constraint
K_ub = polyval(a,t1)-ub;
K_lb = lb - polyval(a,t2);
end
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!