Unexpected image size: All images must have the same size.

20 Ansichten (letzte 30 Tage)
Hi, I'm having some problems with a bench of chest xray images. I tryed to use the code from the link below, but it did not work.
Error using trainNetwork (line 165)
Unexpected image size: All images must have the same size.
Error in chestXray1 (line 49)
net = trainNetwork(imdsTrain,layers,options);
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',3, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
  8 Kommentare
Andre Brandao
Andre Brandao am 9 Jul. 2019
is missing width or height or #channels
Geoff Hayes
Geoff Hayes am 9 Jul. 2019
try putting a breakpoint at the line
allfiles = fullfile({dinfo.folder}, {dinfo.name});
and then run the code. When the debugger pauses at thisline, step through the subsequent lines. What is thisfile set to? What is thisinfo?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Dheeraj Singh
Dheeraj Singh am 5 Aug. 2019
You can use augmentedImageDataStore to resize all images to same size.
Use the following code for your problem:
dataChest = fullfile('/Users/andrebr4/Documents/MATLAB/chestXray/chest_xray');
imds = imageDatastore(dataChest, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
%% Dividir o conjunto de dados em cada categoria
numTrainingFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainingFiles,'randomize');
%%%%%%%code for resizing
inputSize=[224 224 1];
imdsTrain=augmentedImageDatastore(inputSize, imdsTrain,'ColorPreprocessing','rgb2gray');
imdsValidation=augmentedImageDatastore(inputSize, imdsValidation,'ColorPreprocessing','rgb2gray');
%% Configurar a rede neural
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%% Opções de treino
options = trainingOptions('sgdm', ...
'MaxEpochs',5, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
%% Treinar a rede neural
net = trainNetwork(imdsTrain,layers,options);
%% Executar rede treinada no conjunto de teste
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%% Calcular a precisão
accuracy = sum(YPred == YValidation)/numel(YValidation)
  3 Kommentare
Mohamed Nasr
Mohamed Nasr am 28 Apr. 2020
Hi i have the same problem but with 3channels what i do ?
Mohamed Nasr
Mohamed Nasr am 28 Apr. 2020
and make error in YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by