is intended to indicate the open set, then A cannot be 0, and you canHow to solve a system of two non-linear equations symbolically
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Franziska
am 18 Jun. 2019
Kommentiert: Franziska
am 20 Jun. 2019
I have the following equations:


where
is a constant. I want to find both
and
as a function of A. I tried solving it symbolically, which does give a result, but I do not know how to interpret or simplify it.
is a constant. I want to find both syms L0
syms L1
syms A
a=2/3;
[L0 L1]= solve(L0 -1 +a*L1^(a-1) -a*A*L0^(a-1)==0, L1 -1 -a*L1^(a-1) +a*A*L0^(a-1)==0)
Plotting the Solution numerically worked with the following code, and led to the result I expected, but do you have an idea how I could get a symbolical solution (or approximation if necessary), for the variables
and
as a function of A? I'd need it to do further calculations (by hand).
Thanks a lot, your help is appreciated!
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 18 Jun. 2019
Bearbeitet: Walter Roberson
am 20 Jun. 2019
sol = solve(L0 -1 +a*L1^(a-1) -a*A*L0^(a-1)==0, L1 -1 -a*L1^(a-1) +a*A*L0^(a-1)==0,'returnconditions',true);
sol =
struct with fields:
L0: [28×1 sym]
L1: [28×1 sym]
parameters: [1×1 sym]
conditions: [28×1 sym]
>> sol.conditions
ans =
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A == 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
A ~= 0
So what you have is two sets of solutions. The first 13 solutions are relevant when A == 0. The first is 0, and the next 12 solutions are the cube of the 12 roots of the polynomial z^12 - 5*z^9 + 9*z^6 - 7*z^3 + 46/27 . The 15 solutions after that are the cubes of the 15 roots of the polynomial z^15 - 5*z^12 - 2*A*z^11 + 9*z^9 + 8*A*z^8 + (4*A^2*z^7)/3 - 7*z^6 - 10*A*z^5 - 4*A^2*z^4 - (z^3*(8*A^3 - 46))/27 + 4*A*z^2 + (8*A^2*z)/3 + (16*A^3)/27 .
If your
is intended to indicate the open set, then A cannot be 0, and you can
is intended to indicate the open set, then A cannot be 0, and you can syms L0 L1 A
assume(A>0 & A<1)
sol = solve(L0 -1 +a*L1^(a-1) -a*A*L0^(a-1)==0, L1 -1 -a*L1^(a-1) +a*A*L0^(a-1)==0)
to get just the 15 solutions
You can convert that polynomial into a roots() call:
roots([1, 0, 0, -5, -2*A, 0, 9, 8*A, (4*A^2)/3, -7, + -10*A, -4*A^2, 46/27 - (8*A^3)/27, 4*A, (8*A^2)/3, (16*A^3)/27])
It appears to me that the 3rd and 6th and 15th root are real-valued. I am not sure at the moment if there are any particular real points for specific A values; I am seeing artifacts due to the way that roots are numbered.
4 Kommentare
Walter Roberson
am 20 Jun. 2019
"With the roots() call I get the same 15 solutions... How did that help? "
With the roots call you get 15 numeric solutions.
>> A=1/3;roots([1, 0, 0, -5, -2*A, 0, 9, 8*A, (4*A^2)/3, -7, + -10*A, -4*A^2, 46/27 - (8*A^3)/27, 4*A, (8*A^2)/3, (16*A^3)/27])
ans =
1.3086285136187 + 0i
1.13534173484129 + 0.166598557544465i
1.13534173484129 - 0.166598557544465i
0.86739394608367 + 0i
-0.638326898150363 + 1.12185507902337i
-0.638326898150363 - 1.12185507902337i
-0.345631679731567 + 1.05445786581201i
-0.345631679731567 - 1.05445786581201i
-0.646415333735405 + 0.843949170383418i
-0.646415333735405 - 0.843949170383418i
-0.233517483108016 + 0.717352144678334i
-0.233517483108016 - 0.717352144678334i
-0.408011319404886 + 0i
-0.155455910264676 + 0.0557721334189132i
-0.155455910264676 - 0.0557721334189132i
This does not require the symbolic toolbox.
There are no closed form solutions for degree 15 polynomials.
Perhaps you would be willing to live with the approximation that
L0_3 = 0.4292*A.^3 - 0.8521*A.^2 + 0.02415*A + 0.002639 %values < 0 decreasing
L0_6 = 0.002639*A.^3 - 0.2629*A.^2 + 0.7519*A + 0.4282 %values > 0.4
L0_15 = -0.00775*A.^3 + 0.06886*A.^2 + 0.1602*A + 2.18 %values > 2
In each case, the corresponding L1 value is 2 minus the L0 value. If you were expecting both L0 and L1 to be positive, then the 6th root is the only solution.
Weitere Antworten (1)
darova
am 18 Jun. 2019
Use matlabFunction() to make function handle from symboliv expression
L0 = matlabFunction(L0);
L1 = matlabFunction(L1);
A = 0.5:0.01:2;
plot(A,L0(A),A,L1(A))
0 Kommentare
Siehe auch
Kategorien
Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!