How to write a code for a bounded periodic function?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Anne Brinkman
am 3 Jun. 2019
Beantwortet: Torsten
am 4 Jun. 2019
close all
syms W(t);
W(t) = piecewise(3/12<=t<=8/12, 1,t>=1, W(t-1) ,0);
t(1) = 0;
y1(1) = 600;
y2(1) = 1000;
h = 0.5;
t_end = 5;
t = 0:h:t_end;
a = 2;
c = 3;
alfa = 10^-3;
gamma = 6*10^-3;
f = @(t,y1,y2) (a-alfa*y2)*y1-W(t)*y1;
g = @(t,y1,y2) (-c+gamma*y1)*y2;
for i = 1:(length(t)-1)
k1 = f(t(i),y1(i),y2(i));
l1 = g(t(i),y1(i),y2(i));
k2 = f(t(i)+h/2,(y1(i)+0.5*k1*h),(y2(i)+(0.5*l1*h)));
l2 = g(t(i)+h/2,(y1(i)+0.5*k1*h),(y2(i)+(0.5*l1*h)));
k3 = f(t(i)+h/2,(y1(i)+0.5*k2*h),(y2(i)+(0.5*l2*h)));
l3 = g(t(i)+h/2,(y1(i)+0.5*k2*h),(y2(i)+(0.5*l2*h)));
k4 = f(t(i)+h,(y1(i)+k3*h),(y2(i)+l3*h));
l4 = g(t(i)+h,(y1(i)+k3*h),(y2(i)+l3*h));
y1(i+1) = y1(i) + (k1 +2*k2 +2*k3 +k4)*(h/6);
y2(i+1) = y2(i) + (l1 +2*l2 +2*l3 +l4)*(h/6);
ystar=[y1', y2'];
end
This code is for the implementation of a predator-prey model/ volterra-lotka model using the time integration method RK4. There is a t dependent (W(t)) variable in the function. How can these bounded values be implemented on matlab? Especially the W(t-1) part, this part will look at the previous boundaries.
0 Kommentare
Akzeptierte Antwort
Torsten
am 4 Jun. 2019
t(1) = 0;
y1(1) = 600;
y2(1) = 1000;
h = 0.5;
t_end = 5;
t = 0:h:t_end;
a = 2;
c = 3;
alfa = 10^-3;
gamma = 6*10^-3;
f = @(t,y1,y2) (a-alfa*y2)*y1-W(t)*y1;
g = @(t,y1,y2) (-c+gamma*y1)*y2;
for i = 1:(length(t)-1)
k1 = f(t(i),y1(i),y2(i));
l1 = g(t(i),y1(i),y2(i));
k2 = f(t(i)+h/2,(y1(i)+0.5*k1*h),(y2(i)+(0.5*l1*h)));
l2 = g(t(i)+h/2,(y1(i)+0.5*k1*h),(y2(i)+(0.5*l1*h)));
k3 = f(t(i)+h/2,(y1(i)+0.5*k2*h),(y2(i)+(0.5*l2*h)));
l3 = g(t(i)+h/2,(y1(i)+0.5*k2*h),(y2(i)+(0.5*l2*h)));
k4 = f(t(i)+h,(y1(i)+k3*h),(y2(i)+l3*h));
l4 = g(t(i)+h,(y1(i)+k3*h),(y2(i)+l3*h));
y1(i+1) = y1(i) + (k1 +2*k2 +2*k3 +k4)*(h/6);
y2(i+1) = y2(i) + (l1 +2*l2 +2*l3 +l4)*(h/6);
ystar=[y1', y2'];
end
function Wvalue = W(t)
W0 = some value;
Wvalue = 0.0;
tt = t - floor(t);
if tt >= 3/12 && tt <= 8/12
Wvalue = W0;
end
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!