Why accept Matlab no vector as a response when I use CNN with residual connection?

1 Ansicht (letzte 30 Tage)
I train my own CNN model like this tutorial:
but I need no classification layer at the end my neural network, but regression layer. That's why I need to define a vector for each sample. All in all, I have to train a matrix(40*num_of_samples), which must be converted into a 4D array like this tutorial:
I get this error:
Invalid validation data. Y must be a vector of categorical responses.
Does someone know how I can fix this?
  3 Kommentare
Osama Tabbakh
Osama Tabbakh am 29 Mai 2019
Let say this is my input images:
X_Train(:,:,3,3000) = rand(100);
my outputs are defined like this:
Y_4D_train=randn(1,1,40,3000);
and the data for validation:
X_Val(:,:,3,1000) = rand(100);
Y_4D_Val =randn(1,1,40,1000);
and then I did like the tutorial:
imageSize = [100 100 3];
pixelRange = [-4 4];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(imageSize,X_Train,Y_4D_train, ...
'DataAugmentation',imageAugmenter, ...
'OutputSizeMode','randcrop');
...
...
At the end:
trainedNet = trainNetwork(augimdsTrain,lgraph,options);

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by